File size: 38,583 Bytes
41c5642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
{
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 20,
      "metadata": {
        "id": "wUWIn56C2EVy"
      },
      "outputs": [],
      "source": [
        "import nltk\n",
        "from nltk.stem import WordNetLemmatizer\n",
        "lemmatizer = WordNetLemmatizer()\n",
        "import json\n",
        "import pickle\n",
        "import numpy as np\n",
        "from keras.models import Sequential\n",
        "from keras.layers import Dense, Activation, Dropout\n",
        "# from keras.optimizers import SGD\n",
        "from tensorflow.keras.optimizers import SGD\n",
        "import random"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "hBb-ddKr2zlg",
        "outputId": "d216a15f-5142-4cad-a214-cc911a214394"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package punkt to C:\\Users\\Makara\n",
            "[nltk_data]     PC\\AppData\\Roaming\\nltk_data...\n",
            "[nltk_data]   Unzipping tokenizers\\punkt.zip.\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "execution_count": 2,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "nltk.download('punkt')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WJNKSOig29LD",
        "outputId": "4a6505c1-4080-4097-d661-95275788348f"
      },
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package wordnet to C:\\Users\\Makara\n",
            "[nltk_data]     PC\\AppData\\Roaming\\nltk_data...\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "execution_count": 3,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "nltk.download('wordnet')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {},
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "[nltk_data] Downloading package omw-1.4 to C:\\Users\\Makara\n",
            "[nltk_data]     PC\\AppData\\Roaming\\nltk_data...\n"
          ]
        },
        {
          "data": {
            "text/plain": [
              "True"
            ]
          },
          "execution_count": 7,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "nltk.download('omw-1.4')"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "CcRMqaqy2aXK"
      },
      "outputs": [],
      "source": [
        "words=[]\n",
        "classes = []\n",
        "documents = []\n",
        "ignore_words = ['?', '!']\n",
        "data_file = open('data.json').read()\n",
        "intents = json.loads(data_file)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "id": "85GcOWiP2iWf"
      },
      "outputs": [],
      "source": [
        "for intent in intents['intents']:\n",
        "    for pattern in intent['patterns']:\n",
        "        #tokenize each word\n",
        "        w = nltk.word_tokenize(pattern)\n",
        "        words.extend(w)\n",
        "        #add documents in the corpus\n",
        "        documents.append((w, intent['tag']))\n",
        "        # add to our classes list\n",
        "        if intent['tag'] not in classes:\n",
        "            classes.append(intent['tag'])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "p1iYlVBm2i8v",
        "outputId": "a0696f92-8558-484d-fab1-8287685658cc"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "47 documents\n",
            "9 classes ['adverse_drug', 'blood_pressure', 'blood_pressure_search', 'goodbye', 'greeting', 'hospital_search', 'options', 'pharmacy_search', 'thanks']\n",
            "88 unique lemmatized words [\"'s\", ',', 'a', 'adverse', 'all', 'anyone', 'are', 'awesome', 'be', 'behavior', 'blood', 'by', 'bye', 'can', 'causing', 'chatting', 'check', 'could', 'data', 'day', 'detail', 'do', 'dont', 'drug', 'entry', 'find', 'for', 'give', 'good', 'goodbye', 'have', 'hello', 'help', 'helpful', 'helping', 'hey', 'hi', 'history', 'hola', 'hospital', 'how', 'i', 'id', 'is', 'later', 'list', 'load', 'locate', 'log', 'looking', 'lookup', 'management', 'me', 'module', 'nearby', 'next', 'nice', 'of', 'offered', 'open', 'patient', 'pharmacy', 'pressure', 'provide', 'reaction', 'related', 'result', 'search', 'searching', 'see', 'show', 'suitable', 'support', 'task', 'thank', 'thanks', 'that', 'there', 'till', 'time', 'to', 'transfer', 'up', 'want', 'what', 'which', 'with', 'you']\n"
          ]
        }
      ],
      "source": [
        "# lemmaztize and lower each word and remove duplicates\n",
        "words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]\n",
        "words = sorted(list(set(words)))\n",
        "# sort classes\n",
        "classes = sorted(list(set(classes)))\n",
        "# documents = combination between patterns and intents\n",
        "print (len(documents), \"documents\")\n",
        "# classes = intents\n",
        "print (len(classes), \"classes\", classes)\n",
        "# words = all words, vocabulary\n",
        "print (len(words), \"unique lemmatized words\", words)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {
        "id": "H5EZ1wf325dH"
      },
      "outputs": [],
      "source": [
        "pickle.dump(words,open('texts.pkl','wb'))\n",
        "pickle.dump(classes,open('labels.pkl','wb'))"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 10,
      "metadata": {
        "id": "oTj9egGz3CMZ"
      },
      "outputs": [],
      "source": [
        "# create our training data\n",
        "training = []\n",
        "# create an empty array for our output\n",
        "output_empty = [0] * len(classes)\n",
        "# training set, bag of words for each sentence\n",
        "for doc in documents:\n",
        "    # initialize our bag of words\n",
        "    bag = []\n",
        "    # list of tokenized words for the pattern\n",
        "    pattern_words = doc[0]\n",
        "    # lemmatize each word - create base word, in attempt to represent related words\n",
        "    pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]\n",
        "    # create our bag of words array with 1, if word match found in current pattern\n",
        "    for w in words:\n",
        "        bag.append(1) if w in pattern_words else bag.append(0)\n",
        "\n",
        "    # output is a '0' for each tag and '1' for current tag (for each pattern)\n",
        "    output_row = list(output_empty)\n",
        "    output_row[classes.index(doc[1])] = 1\n",
        "\n",
        "    training.append([bag, output_row])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "TWZKpn-43KaH",
        "outputId": "c2b89f6a-d1e8-4e25-908f-5b8f1a5bb84a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Training data created\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "c:\\Users\\Makara PC\\.conda\\envs\\chat-bot-app\\lib\\site-packages\\ipykernel_launcher.py:3: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
            "  This is separate from the ipykernel package so we can avoid doing imports until\n"
          ]
        }
      ],
      "source": [
        "# shuffle our features and turn into np.array\n",
        "random.shuffle(training)\n",
        "training = np.array(training)\n",
        "# create train and test lists. X - patterns, Y - intents\n",
        "train_x = list(training[:,0])\n",
        "train_y = list(training[:,1])\n",
        "print(\"Training data created\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "metadata": {
        "id": "c4rbUrWB3MAX"
      },
      "outputs": [],
      "source": [
        "# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons\n",
        "# equal to number of intents to predict output intent with softmax\n",
        "model = Sequential()\n",
        "model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))\n",
        "model.add(Dropout(0.5))\n",
        "model.add(Dense(64, activation='relu'))\n",
        "model.add(Dropout(0.5))\n",
        "model.add(Dense(len(train_y[0]), activation='softmax'))"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 21,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "fRmg-rBd3OnQ",
        "outputId": "5369506c-da45-4dd5-8773-59f52875bc68"
      },
      "outputs": [],
      "source": [
        "# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model\n",
        "sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)\n",
        "model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 22,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "DeD0fV0c3RBn",
        "outputId": "392059e2-dfe7-46a0-b2c8-db2f3702a483"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Epoch 1/200\n",
            "10/10 [==============================] - 1s 2ms/step - loss: 2.2413 - accuracy: 0.1064\n",
            "Epoch 2/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 2.1823 - accuracy: 0.2340\n",
            "Epoch 3/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 2.1345 - accuracy: 0.2128\n",
            "Epoch 4/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.9794 - accuracy: 0.3191\n",
            "Epoch 5/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 1.8818 - accuracy: 0.3191\n",
            "Epoch 6/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.7872 - accuracy: 0.4043\n",
            "Epoch 7/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.6584 - accuracy: 0.5106\n",
            "Epoch 8/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 1.5289 - accuracy: 0.5319\n",
            "Epoch 9/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 1.4448 - accuracy: 0.5957\n",
            "Epoch 10/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.2668 - accuracy: 0.5957\n",
            "Epoch 11/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.2086 - accuracy: 0.6809\n",
            "Epoch 12/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.9905 - accuracy: 0.8085\n",
            "Epoch 13/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 1.0099 - accuracy: 0.7872\n",
            "Epoch 14/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.9804 - accuracy: 0.7234\n",
            "Epoch 15/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.8112 - accuracy: 0.8298\n",
            "Epoch 16/200\n",
            "10/10 [==============================] - 0s 7ms/step - loss: 0.7849 - accuracy: 0.7447\n",
            "Epoch 17/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.6714 - accuracy: 0.7872\n",
            "Epoch 18/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.6601 - accuracy: 0.7872\n",
            "Epoch 19/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.4989 - accuracy: 0.8936\n",
            "Epoch 20/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.7604 - accuracy: 0.7447\n",
            "Epoch 21/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.7019 - accuracy: 0.7872\n",
            "Epoch 22/200\n",
            "10/10 [==============================] - 0s 8ms/step - loss: 0.5007 - accuracy: 0.8936\n",
            "Epoch 23/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.4494 - accuracy: 0.8723\n",
            "Epoch 24/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.3297 - accuracy: 0.9362\n",
            "Epoch 25/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.3112 - accuracy: 0.9362\n",
            "Epoch 26/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.3624 - accuracy: 0.9362\n",
            "Epoch 27/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.2498 - accuracy: 0.9362\n",
            "Epoch 28/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.2607 - accuracy: 0.9362\n",
            "Epoch 29/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.2573 - accuracy: 0.9362\n",
            "Epoch 30/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1811 - accuracy: 0.9787\n",
            "Epoch 31/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.3079 - accuracy: 0.8936\n",
            "Epoch 32/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.2232 - accuracy: 0.9574\n",
            "Epoch 33/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1904 - accuracy: 0.9787\n",
            "Epoch 34/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.2117 - accuracy: 0.9149\n",
            "Epoch 35/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1476 - accuracy: 0.9787\n",
            "Epoch 36/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1317 - accuracy: 1.0000\n",
            "Epoch 37/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0762 - accuracy: 1.0000\n",
            "Epoch 38/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1502 - accuracy: 0.9149\n",
            "Epoch 39/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1191 - accuracy: 0.9574\n",
            "Epoch 40/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1490 - accuracy: 0.9787\n",
            "Epoch 41/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.2177 - accuracy: 0.9574\n",
            "Epoch 42/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.1596 - accuracy: 0.9574\n",
            "Epoch 43/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1574 - accuracy: 0.9574\n",
            "Epoch 44/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.2133 - accuracy: 0.9149\n",
            "Epoch 45/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.1228 - accuracy: 0.9787\n",
            "Epoch 46/200\n",
            "10/10 [==============================] - 0s 7ms/step - loss: 0.1345 - accuracy: 0.9574\n",
            "Epoch 47/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1022 - accuracy: 0.9787\n",
            "Epoch 48/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1116 - accuracy: 0.9574\n",
            "Epoch 49/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1366 - accuracy: 0.9362\n",
            "Epoch 50/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1418 - accuracy: 0.9574\n",
            "Epoch 51/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1272 - accuracy: 1.0000\n",
            "Epoch 52/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0773 - accuracy: 1.0000\n",
            "Epoch 53/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0499 - accuracy: 1.0000\n",
            "Epoch 54/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1199 - accuracy: 0.9574\n",
            "Epoch 55/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.1400 - accuracy: 1.0000\n",
            "Epoch 56/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.0842 - accuracy: 0.9787\n",
            "Epoch 57/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1037 - accuracy: 0.9787\n",
            "Epoch 58/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.1494 - accuracy: 0.9362\n",
            "Epoch 59/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0432 - accuracy: 1.0000\n",
            "Epoch 60/200\n",
            "10/10 [==============================] - 0s 6ms/step - loss: 0.0823 - accuracy: 0.9787\n",
            "Epoch 61/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0534 - accuracy: 1.0000\n",
            "Epoch 62/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0671 - accuracy: 1.0000\n",
            "Epoch 63/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0628 - accuracy: 1.0000\n",
            "Epoch 64/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0229 - accuracy: 1.0000\n",
            "Epoch 65/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0617 - accuracy: 1.0000\n",
            "Epoch 66/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0603 - accuracy: 0.9787\n",
            "Epoch 67/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0239 - accuracy: 1.0000\n",
            "Epoch 68/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1004 - accuracy: 0.9574\n",
            "Epoch 69/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0582 - accuracy: 0.9787\n",
            "Epoch 70/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1214 - accuracy: 0.9362\n",
            "Epoch 71/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0270 - accuracy: 1.0000\n",
            "Epoch 72/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0916 - accuracy: 0.9787\n",
            "Epoch 73/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0413 - accuracy: 1.0000\n",
            "Epoch 74/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0502 - accuracy: 1.0000\n",
            "Epoch 75/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0618 - accuracy: 0.9787\n",
            "Epoch 76/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0723 - accuracy: 1.0000\n",
            "Epoch 77/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.1292 - accuracy: 0.9574\n",
            "Epoch 78/200\n",
            "10/10 [==============================] - ETA: 0s - loss: 0.0038 - accuracy: 1.00 - 0s 1ms/step - loss: 0.0298 - accuracy: 1.0000\n",
            "Epoch 79/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0176 - accuracy: 1.0000\n",
            "Epoch 80/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1068 - accuracy: 0.9574\n",
            "Epoch 81/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0200 - accuracy: 1.0000\n",
            "Epoch 82/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0183 - accuracy: 1.0000\n",
            "Epoch 83/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0467 - accuracy: 1.0000\n",
            "Epoch 84/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0539 - accuracy: 1.0000\n",
            "Epoch 85/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.0998 - accuracy: 0.9574\n",
            "Epoch 86/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.1305 - accuracy: 0.9574\n",
            "Epoch 87/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0236 - accuracy: 1.0000\n",
            "Epoch 88/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0365 - accuracy: 1.0000\n",
            "Epoch 89/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0752 - accuracy: 0.9787\n",
            "Epoch 90/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0443 - accuracy: 1.0000\n",
            "Epoch 91/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0955 - accuracy: 0.9787\n",
            "Epoch 92/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0447 - accuracy: 1.0000\n",
            "Epoch 93/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0775 - accuracy: 0.9787\n",
            "Epoch 94/200\n",
            "10/10 [==============================] - 0s 8ms/step - loss: 0.0479 - accuracy: 1.0000\n",
            "Epoch 95/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0529 - accuracy: 1.0000\n",
            "Epoch 96/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0087 - accuracy: 1.0000\n",
            "Epoch 97/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0415 - accuracy: 1.0000\n",
            "Epoch 98/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0348 - accuracy: 1.0000\n",
            "Epoch 99/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0130 - accuracy: 1.0000\n",
            "Epoch 100/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0250 - accuracy: 1.0000\n",
            "Epoch 101/200\n",
            "10/10 [==============================] - 0s 6ms/step - loss: 0.0513 - accuracy: 0.9787\n",
            "Epoch 102/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0326 - accuracy: 0.9787\n",
            "Epoch 103/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0516 - accuracy: 0.9787\n",
            "Epoch 104/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0376 - accuracy: 1.0000\n",
            "Epoch 105/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.0236 - accuracy: 1.0000\n",
            "Epoch 106/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0146 - accuracy: 1.0000\n",
            "Epoch 107/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0327 - accuracy: 1.0000\n",
            "Epoch 108/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0333 - accuracy: 1.0000\n",
            "Epoch 109/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0046 - accuracy: 1.0000\n",
            "Epoch 110/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0920 - accuracy: 0.9574\n",
            "Epoch 111/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0155 - accuracy: 1.0000\n",
            "Epoch 112/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0148 - accuracy: 1.0000\n",
            "Epoch 113/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0248 - accuracy: 1.0000\n",
            "Epoch 114/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0260 - accuracy: 1.0000\n",
            "Epoch 115/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0162 - accuracy: 1.0000\n",
            "Epoch 116/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0659 - accuracy: 0.9787\n",
            "Epoch 117/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0618 - accuracy: 0.9787\n",
            "Epoch 118/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0301 - accuracy: 1.0000\n",
            "Epoch 119/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0334 - accuracy: 1.0000\n",
            "Epoch 120/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0224 - accuracy: 1.0000\n",
            "Epoch 121/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.1810 - accuracy: 0.9574\n",
            "Epoch 122/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0677 - accuracy: 1.0000\n",
            "Epoch 123/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0693 - accuracy: 0.9787\n",
            "Epoch 124/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0523 - accuracy: 0.9787\n",
            "Epoch 125/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0281 - accuracy: 1.0000\n",
            "Epoch 126/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0209 - accuracy: 1.0000\n",
            "Epoch 127/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0405 - accuracy: 0.9787\n",
            "Epoch 128/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0093 - accuracy: 1.0000\n",
            "Epoch 129/200\n",
            "10/10 [==============================] - ETA: 0s - loss: 0.0834 - accuracy: 1.00 - 0s 2ms/step - loss: 0.0413 - accuracy: 1.0000\n",
            "Epoch 130/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0122 - accuracy: 1.0000\n",
            "Epoch 131/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0125 - accuracy: 1.0000\n",
            "Epoch 132/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0099 - accuracy: 1.0000\n",
            "Epoch 133/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0281 - accuracy: 1.0000\n",
            "Epoch 134/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0179 - accuracy: 1.0000\n",
            "Epoch 135/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0070 - accuracy: 1.0000\n",
            "Epoch 136/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0456 - accuracy: 1.0000\n",
            "Epoch 137/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0493 - accuracy: 0.9787\n",
            "Epoch 138/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0211 - accuracy: 1.0000\n",
            "Epoch 139/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0098 - accuracy: 1.0000\n",
            "Epoch 140/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0306 - accuracy: 1.0000\n",
            "Epoch 141/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0076 - accuracy: 1.0000\n",
            "Epoch 142/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0605 - accuracy: 0.9787\n",
            "Epoch 143/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0273 - accuracy: 1.0000\n",
            "Epoch 144/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0450 - accuracy: 1.0000\n",
            "Epoch 145/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0090 - accuracy: 1.0000\n",
            "Epoch 146/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0230 - accuracy: 1.0000\n",
            "Epoch 147/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0096 - accuracy: 1.0000\n",
            "Epoch 148/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0137 - accuracy: 1.0000\n",
            "Epoch 149/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0288 - accuracy: 1.0000\n",
            "Epoch 150/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0313 - accuracy: 1.0000\n",
            "Epoch 151/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0315 - accuracy: 1.0000\n",
            "Epoch 152/200\n",
            "10/10 [==============================] - ETA: 0s - loss: 4.1381e-04 - accuracy: 1.00 - 0s 2ms/step - loss: 0.0146 - accuracy: 1.0000\n",
            "Epoch 153/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0198 - accuracy: 1.0000\n",
            "Epoch 154/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0291 - accuracy: 0.9787\n",
            "Epoch 155/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0294 - accuracy: 0.9787\n",
            "Epoch 156/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0085 - accuracy: 1.0000\n",
            "Epoch 157/200\n",
            "10/10 [==============================] - 0s 998us/step - loss: 0.0434 - accuracy: 0.9787\n",
            "Epoch 158/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0236 - accuracy: 1.0000\n",
            "Epoch 159/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0070 - accuracy: 1.0000\n",
            "Epoch 160/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0170 - accuracy: 1.0000\n",
            "Epoch 161/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0199 - accuracy: 1.0000\n",
            "Epoch 162/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0073 - accuracy: 1.0000\n",
            "Epoch 163/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0289 - accuracy: 1.0000\n",
            "Epoch 164/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0165 - accuracy: 1.0000\n",
            "Epoch 165/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0180 - accuracy: 1.0000\n",
            "Epoch 166/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0083 - accuracy: 1.0000\n",
            "Epoch 167/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0038 - accuracy: 1.0000\n",
            "Epoch 168/200\n",
            "10/10 [==============================] - 0s 6ms/step - loss: 0.0112 - accuracy: 1.0000\n",
            "Epoch 169/200\n",
            "10/10 [==============================] - 0s 15ms/step - loss: 0.0166 - accuracy: 1.0000\n",
            "Epoch 170/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0041 - accuracy: 1.0000\n",
            "Epoch 171/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.0424 - accuracy: 0.9787\n",
            "Epoch 172/200\n",
            "10/10 [==============================] - 0s 5ms/step - loss: 0.0393 - accuracy: 0.9787\n",
            "Epoch 173/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0543 - accuracy: 0.9787\n",
            "Epoch 174/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0177 - accuracy: 1.0000\n",
            "Epoch 175/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0305 - accuracy: 0.9787\n",
            "Epoch 176/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0069 - accuracy: 1.0000\n",
            "Epoch 177/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0440 - accuracy: 0.9787\n",
            "Epoch 178/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0337 - accuracy: 1.0000\n",
            "Epoch 179/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0526 - accuracy: 0.9787\n",
            "Epoch 180/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0137 - accuracy: 1.0000\n",
            "Epoch 181/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0091 - accuracy: 1.0000\n",
            "Epoch 182/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0177 - accuracy: 1.0000\n",
            "Epoch 183/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0137 - accuracy: 1.0000\n",
            "Epoch 184/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0099 - accuracy: 1.0000\n",
            "Epoch 185/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.1220 - accuracy: 0.9574\n",
            "Epoch 186/200\n",
            "10/10 [==============================] - 0s 740us/step - loss: 0.0532 - accuracy: 0.9787\n",
            "Epoch 187/200\n",
            "10/10 [==============================] - ETA: 0s - loss: 5.3321e-04 - accuracy: 1.00 - 0s 3ms/step - loss: 0.0055 - accuracy: 1.0000\n",
            "Epoch 188/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0095 - accuracy: 1.0000\n",
            "Epoch 189/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0052 - accuracy: 1.0000\n",
            "Epoch 190/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0429 - accuracy: 1.0000\n",
            "Epoch 191/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0163 - accuracy: 1.0000\n",
            "Epoch 192/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0160 - accuracy: 1.0000\n",
            "Epoch 193/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0227 - accuracy: 1.0000\n",
            "Epoch 194/200\n",
            "10/10 [==============================] - 0s 4ms/step - loss: 0.0065 - accuracy: 1.0000\n",
            "Epoch 195/200\n",
            "10/10 [==============================] - 0s 3ms/step - loss: 0.0052 - accuracy: 1.0000\n",
            "Epoch 196/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 9.3289e-04 - accuracy: 1.0000\n",
            "Epoch 197/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0115 - accuracy: 1.0000\n",
            "Epoch 198/200\n",
            "10/10 [==============================] - 0s 1ms/step - loss: 0.0444 - accuracy: 0.9787\n",
            "Epoch 199/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0101 - accuracy: 1.0000\n",
            "Epoch 200/200\n",
            "10/10 [==============================] - 0s 2ms/step - loss: 0.0175 - accuracy: 1.0000\n"
          ]
        }
      ],
      "source": [
        "# Fitting and saving the model\n",
        "hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)\n",
        "model.save('model.h5', hist)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.6.13"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}