Spaces:
Running
Running
File size: 4,671 Bytes
9be5a22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
import transformers as tf
import plotly.graph_objects as go
import matplotlib.cm as cm
import pandas as pd
# Function to load and cache models
@st.experimental_singleton(show_spinner=False)
def load_model(username, prefix, model_name):
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}')
return p
@st.experimental_singleton(show_spinner=False)
def load_pickle(f):
return pd.read_pickle(f)
def get_results(model, c):
res = model(c)[0]
label = float(res['label'].split('_')[1])
score = res['score']
return {'label': label, 'score': score}
def run_models(model_names, models, c):
results = {}
for mn in model_names:
results[mn] = get_results(models[mn], c)
return results
st.title('Assess the *QuAL*ity of your feedback')
st.caption(
"""Medical education *requires* high-quality feedback, but evaluating feedback
is difficult and time-consuming. This tool uses NLP/ML to predict a validated
feedback quality metric known as the QuAL Score. *Try it for yourself!*
""")
### Load models
# Specify which models to load
USERNAME = 'maxspad'
PREFIX = 'nlp-qual'
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
n_models = float(len(models_to_load))
models = {}
# Show a progress bar while models are downloading,
# then hide it when done
lc_placeholder = st.empty()
loader_container = lc_placeholder.container()
loader_container.caption('Loading models... please wait...')
pbar = loader_container.progress(0.0)
for i, mn in enumerate(models_to_load):
pbar.progress((i+1.0) / n_models)
models[mn] = load_model(USERNAME, PREFIX, mn)
lc_placeholder.empty()
### Load example data
examples = load_pickle('test.pkl')
### Process input
ex = examples['comment'].sample(1).tolist()[0]
try:
ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank')
except:
ex = 'blank'
if 'comment' not in st.session_state:
st.session_state['comment'] = ex
with st.form('comment_form'):
comment = st.text_area('Try a comment:', value=st.session_state['comment'])
left_col, right_col = st.columns([1,9], gap='medium')
submitted = left_col.form_submit_button('Submit')
trying_example = right_col.form_submit_button('Try an example!')
if submitted:
st.session_state['button_clicked'] = 'submit'
st.session_state['comment'] = comment
st.experimental_rerun()
elif trying_example:
st.session_state['button_clicked'] = 'example'
st.session_state['comment'] = ex
st.experimental_rerun()
results = run_models(models_to_load, models, st.session_state['comment'])
tab_titles = ['Overview', 'Q1 - Level of Detail', 'Q2 - Suggestion Given', 'Q3 - Suggestion Linked', 'About']
tabs = st.tabs(tab_titles)
with tabs[0]:
cmap = cm.get_cmap('RdYlGn')
color = cmap(results['qual']['label'] / 6.0)
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
fig = go.Figure(go.Indicator(
domain = {'x': [0, 1], 'y': [0, 1]},
value = results['qual']['label'],
mode = "gauge+number",
title = {'text': "QuAL"},
gauge = {'axis': {'range': [None, 5]},
'bgcolor': 'lightgray',
'bar': {'color': color, 'thickness': 1.0},
}
), layout=go.Layout(margin=dict(t=0, b=135)))#, layout=go.Layout(width=750, height=300))# layout={'paper_bgcolor': 'rgb(245,245,245)'})#,
cols = st.columns([7, 3])
with cols[0]:
st.plotly_chart(fig, use_container_width=True)
with cols[1]:
# cols = st.columns(3)
# cols[0].markdown('#### Level of Detail')
q1lab = results['q1']['label']
if q1lab == 0:
md_str = 'π₯ None'
elif q1lab == 1:
md_str = 'π Low'
elif q1lab == 2:
md_str = 'π Medium'
elif q1lab == 3:
md_str = 'π High'
# cols[0].markdown(md_str)
cols[1].metric('Level of Detail', md_str,
help='How specific was the evaluator in describing the behavior?')
q2lab = results['q2i']['label']
if q2lab == 0:
md_str = 'β
Yes'
else:
md_str = 'β No'
cols[1].metric('Suggestion Given', (md_str),
help='Did the evaluator give a suggestion for improvement?')
q3lab = results['q3i']['label']
if q3lab == 0:
md_str = 'β
Yes'
else:
md_str = 'β No'
cols[1].metric('Suggestion Linked', md_str,
help='Is the suggestion for improvement linked to the described behavior?')
|