Spaces:
Running
Running
File size: 7,253 Bytes
cdde032 b92a53d cdde032 b92a53d cdde032 324ad6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import sys,os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch
from omegaconf import OmegaConf
from pitch import load_csv_pitch
from grad.utils import fix_len_compatibility
from grad.model import GradTTS
from bigvgan.model.generator import Generator
import gradio as gr
import numpy as np
import soundfile
import librosa
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
def load_gvc_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
saved_state_dict = checkpoint_dict["model"]
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
return model
def load_bigv_model(checkpoint_path, model):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
saved_state_dict = checkpoint_dict["model_g"]
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
try:
new_state_dict[k] = saved_state_dict[k]
except:
print("%s is not in the checkpoint" % k)
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
return model
@torch.no_grad()
def gvc_main(device, model, _vec, _pit, spk, rature=1.015):
l_vec = _vec.shape[0]
d_vec = _vec.shape[1]
lengths_fix = fix_len_compatibility(l_vec)
lengths = torch.LongTensor([l_vec]).to(device)
vec = torch.zeros((1, lengths_fix, d_vec), dtype=torch.float32).to(device)
pit = torch.zeros((1, lengths_fix), dtype=torch.float32).to(device)
vec[0, :l_vec, :] = _vec
pit[0, :l_vec] = _pit
y_enc, y_dec = model(lengths, vec, pit, spk, n_timesteps=10, temperature=rature)
y_dec = y_dec.squeeze(0)
y_dec = y_dec[:, :l_vec]
return y_dec
def svc_change(argswav, argsspk):
argsvec = "svc_tmp.ppg.npy"
os.system(f"python hubert/inference.py -w {argswav} -v {argsvec}")
argspit = "svc_tmp.pit.npy"
os.system(f"python pitch/inference.py -w {argswav} -p {argspit}")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hps = OmegaConf.load('configs/base.yaml')
print('Initializing Grad-TTS...')
model = GradTTS(hps.grad.n_mels, hps.grad.n_vecs, hps.grad.n_pits, hps.grad.n_spks, hps.grad.n_embs,
hps.grad.n_enc_channels, hps.grad.filter_channels,
hps.grad.dec_dim, hps.grad.beta_min, hps.grad.beta_max, hps.grad.pe_scale)
print('Number of encoder parameters = %.2fm' % (model.encoder.nparams/1e6))
print('Number of decoder parameters = %.2fm' % (model.decoder.nparams/1e6))
load_gvc_model('grad_pretrain/gvc.pretrain.pth', model)
model.eval()
model.to(device)
spk = np.load(argsspk)
spk = torch.FloatTensor(spk)
vec = np.load(argsvec)
vec = np.repeat(vec, 2, 0)
vec = torch.FloatTensor(vec)
pit = load_csv_pitch(argspit)
pit = np.array(pit)
pit = torch.FloatTensor(pit)
len_pit = pit.size()[0]
len_vec = vec.size()[0]
len_min = min(len_pit, len_vec)
pit = pit[:len_min]
vec = vec[:len_min, :]
with torch.no_grad():
spk = spk.unsqueeze(0).to(device)
all_frame = len_min
hop_frame = 8
out_chunk = 2400 # 24 S
out_index = 0
mel = None
while (out_index < all_frame):
if (out_index == 0): # start frame
cut_s = 0
cut_s_out = 0
else:
cut_s = out_index - hop_frame
cut_s_out = hop_frame
if (out_index + out_chunk + hop_frame > all_frame): # end frame
cut_e = all_frame
cut_e_out = -1
else:
cut_e = out_index + out_chunk + hop_frame
cut_e_out = -1 * hop_frame
sub_vec = vec[cut_s:cut_e, :].to(device)
sub_pit = pit[cut_s:cut_e].to(device)
sub_out = gvc_main(device, model, sub_vec, sub_pit, spk, 0.95)
sub_out = sub_out[:, cut_s_out:cut_e_out]
out_index = out_index + out_chunk
if mel == None:
mel = sub_out
else:
mel = torch.cat((mel, sub_out), -1)
if cut_e == all_frame:
break
del model
del hps
del spk
del vec
del sub_vec
del sub_pit
del sub_out
hps = OmegaConf.load('./bigvgan/configs/nsf_bigvgan.yaml')
model = Generator(hps)
load_bigv_model('./bigvgan_pretrain/nsf_bigvgan_pretrain_32K.pth', model)
model.eval()
model.to(device)
len_pit = pit.size()[0]
len_mel = mel.size()[1]
len_min = min(len_pit, len_mel)
pit = pit[:len_min]
mel = mel[:, :len_min]
with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
pit = pit.unsqueeze(0).to(device)
audio = model.inference(mel, pit)
audio = audio.cpu().detach().numpy()
pitwav = model.pitch2wav(pit)
pitwav = pitwav.cpu().detach().numpy()
return audio
def svc_main(sid, input_audio):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
if (len(audio) > 16000*100):
audio = audio[:16000*100]
wav_path = "temp.wav"
soundfile.write(wav_path, audio, 16000, format="wav")
out_audio = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
return "Success", (32000, out_audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Grad-SVC"):
gr.Markdown(
"Based on Grad-TTS from HUAWEI Noah's Ark Lab\n\n"
"This project is named as [Grad-SVC](), or [GVC]() for short. Its core technology is diffusion, but so different from other diffusion based SVC models.\n\n"
"<video id='video' controls='' preload='yes'>\n\n"
"<source id='mp4' src='https://github.com/PlayVoice/Grad-SVC/assets/16432329/f9b66af7-b5b5-4efb-b73d-adb0dc84a0ae' type='video/mp4'>\n\n"
"</videos>\n\n"
)
sid = gr.Dropdown(label="音色", choices=[
"22", "33", "47", "51"], value="47")
vc_input3 = gr.Audio(label="上传音频")
vc_submit = gr.Button("转换", variant="primary")
vc_output1 = gr.Textbox(label="状态信息")
vc_output2 = gr.Audio(label="转换音频")
vc_submit.click(svc_main, [sid, vc_input3], [vc_output1, vc_output2])
app.launch(share=True)
|