File size: 7,253 Bytes
cdde032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92a53d
cdde032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92a53d
 
 
 
 
 
 
cdde032
 
 
 
 
 
 
 
324ad6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import sys,os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import torch

from omegaconf import OmegaConf
from pitch import load_csv_pitch
from grad.utils import fix_len_compatibility
from grad.model import GradTTS
from bigvgan.model.generator import Generator

import gradio as gr
import numpy as np
import soundfile
import librosa
import logging

logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)


def load_gvc_model(checkpoint_path, model):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
    saved_state_dict = checkpoint_dict["model"]
    state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
        except:
            print("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    model.load_state_dict(new_state_dict)
    return model


def load_bigv_model(checkpoint_path, model):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
    saved_state_dict = checkpoint_dict["model_g"]
    state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
        except:
            print("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    model.load_state_dict(new_state_dict)
    return model


@torch.no_grad()
def gvc_main(device, model, _vec, _pit, spk, rature=1.015):
    l_vec = _vec.shape[0]
    d_vec = _vec.shape[1]
    lengths_fix = fix_len_compatibility(l_vec)
    lengths = torch.LongTensor([l_vec]).to(device)
    vec = torch.zeros((1, lengths_fix, d_vec), dtype=torch.float32).to(device)
    pit = torch.zeros((1, lengths_fix), dtype=torch.float32).to(device)
    vec[0, :l_vec, :] = _vec
    pit[0, :l_vec] = _pit
    y_enc, y_dec = model(lengths, vec, pit, spk, n_timesteps=10, temperature=rature)
    y_dec = y_dec.squeeze(0)
    y_dec = y_dec[:, :l_vec]
    return y_dec


def svc_change(argswav, argsspk):

    argsvec = "svc_tmp.ppg.npy"
    os.system(f"python hubert/inference.py -w {argswav} -v {argsvec}")
    argspit = "svc_tmp.pit.npy"
    os.system(f"python pitch/inference.py -w {argswav} -p {argspit}")

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    hps = OmegaConf.load('configs/base.yaml')

    print('Initializing Grad-TTS...')
    model = GradTTS(hps.grad.n_mels, hps.grad.n_vecs, hps.grad.n_pits, hps.grad.n_spks, hps.grad.n_embs,
                    hps.grad.n_enc_channels, hps.grad.filter_channels,
                    hps.grad.dec_dim, hps.grad.beta_min, hps.grad.beta_max, hps.grad.pe_scale)
    print('Number of encoder parameters = %.2fm' % (model.encoder.nparams/1e6))
    print('Number of decoder parameters = %.2fm' % (model.decoder.nparams/1e6))

    load_gvc_model('grad_pretrain/gvc.pretrain.pth', model)
    model.eval()
    model.to(device)

    spk = np.load(argsspk)
    spk = torch.FloatTensor(spk)

    vec = np.load(argsvec)
    vec = np.repeat(vec, 2, 0)
    vec = torch.FloatTensor(vec)

    pit = load_csv_pitch(argspit)
    pit = np.array(pit)
    pit = torch.FloatTensor(pit)

    len_pit = pit.size()[0]
    len_vec = vec.size()[0]
    len_min = min(len_pit, len_vec)
    pit = pit[:len_min]
    vec = vec[:len_min, :]

    with torch.no_grad():
        spk = spk.unsqueeze(0).to(device)

        all_frame = len_min
        hop_frame = 8
        out_chunk = 2400  # 24 S
        out_index = 0
        mel = None

        while (out_index < all_frame):
            if (out_index == 0):  # start frame
                cut_s = 0
                cut_s_out = 0
            else:
                cut_s = out_index - hop_frame
                cut_s_out = hop_frame

            if (out_index + out_chunk + hop_frame > all_frame):  # end frame
                cut_e = all_frame
                cut_e_out = -1
            else:
                cut_e = out_index + out_chunk + hop_frame
                cut_e_out = -1 * hop_frame

            sub_vec = vec[cut_s:cut_e, :].to(device)
            sub_pit = pit[cut_s:cut_e].to(device)

            sub_out = gvc_main(device, model, sub_vec, sub_pit, spk, 0.95)
            sub_out = sub_out[:, cut_s_out:cut_e_out]
 
            out_index = out_index + out_chunk
            if mel == None:
                mel = sub_out
            else:
                mel = torch.cat((mel, sub_out), -1)
            if cut_e == all_frame:
                break

    del model
    del hps
    del spk
    del vec
    del sub_vec
    del sub_pit
    del sub_out

    hps = OmegaConf.load('./bigvgan/configs/nsf_bigvgan.yaml')
    model = Generator(hps)
    load_bigv_model('./bigvgan_pretrain/nsf_bigvgan_pretrain_32K.pth', model)
    model.eval()
    model.to(device)

    len_pit = pit.size()[0]
    len_mel = mel.size()[1]
    len_min = min(len_pit, len_mel)
    pit = pit[:len_min]
    mel = mel[:, :len_min]

    with torch.no_grad():
        mel = mel.unsqueeze(0).to(device)
        pit = pit.unsqueeze(0).to(device)
        audio = model.inference(mel, pit)
        audio = audio.cpu().detach().numpy()

        pitwav = model.pitch2wav(pit)
        pitwav = pitwav.cpu().detach().numpy()

    return audio


def svc_main(sid, input_audio):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    if (len(audio) > 16000*100):
        audio = audio[:16000*100]
    wav_path = "temp.wav"
    soundfile.write(wav_path, audio, 16000, format="wav")
    out_audio = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
    return "Success", (32000, out_audio)


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("Grad-SVC"):
            gr.Markdown(
                "Based on Grad-TTS from HUAWEI Noah's Ark Lab\n\n"
                "This project is named as [Grad-SVC](), or [GVC]() for short. Its core technology is diffusion, but so different from other diffusion based SVC models.\n\n"
                "<video id='video' controls='' preload='yes'>\n\n"
                "<source id='mp4' src='https://github.com/PlayVoice/Grad-SVC/assets/16432329/f9b66af7-b5b5-4efb-b73d-adb0dc84a0ae' type='video/mp4'>\n\n"
                "</videos>\n\n"
                )
            sid = gr.Dropdown(label="音色", choices=[
                              "22", "33", "47", "51"], value="47")
            vc_input3 = gr.Audio(label="上传音频")
            vc_submit = gr.Button("转换", variant="primary")
            vc_output1 = gr.Textbox(label="状态信息")
            vc_output2 = gr.Audio(label="转换音频")
        vc_submit.click(svc_main, [sid, vc_input3], [vc_output1, vc_output2])

    app.launch(share=True)