Spaces:
Running
on
Zero
Running
on
Zero
This PR adds a description & tags (#3)
Browse files- This PR adds a description & tags (6c6202960a0d4ada88cca5d1e2438d840a83712b)
Co-authored-by: Fabrice TIERCELIN <[email protected]>
README.md
CHANGED
|
@@ -1,133 +1,141 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Cinemo
|
| 3 |
-
app_file: demo.py
|
| 4 |
-
sdk: gradio
|
| 5 |
-
sdk_version: 4.
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
```bash
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
<td align="center"
|
| 68 |
-
<td align="center"
|
| 69 |
-
</
|
| 70 |
-
<
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
<
|
| 75 |
-
<td align="center"><img src="visuals/animations/
|
| 76 |
-
<td align="center"><img src="visuals/animations/
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
</
|
| 80 |
-
<
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
<td align="center"
|
| 109 |
-
<td align="center"
|
| 110 |
-
</
|
| 111 |
-
|
| 112 |
-
</
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Cinemo
|
| 3 |
+
app_file: demo.py
|
| 4 |
+
sdk: gradio
|
| 5 |
+
sdk_version: 4.39.0
|
| 6 |
+
tags:
|
| 7 |
+
- Image-2-Video
|
| 8 |
+
- LLM
|
| 9 |
+
- Large Language Model
|
| 10 |
+
short_description: Multimodal Image-to-Video
|
| 11 |
+
emoji: π₯
|
| 12 |
+
colorFrom: green
|
| 13 |
+
colorTo: indigo
|
| 14 |
+
---
|
| 15 |
+
## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
[](https://arxiv.org/abs/2407.15642)
|
| 19 |
+
[](https://maxin-cn.github.io/cinemo_project/)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/).
|
| 23 |
+
|
| 24 |
+
In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance.
|
| 25 |
+
|
| 26 |
+
<div align="center">
|
| 27 |
+
<img src="visuals/pipeline.svg">
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
## News
|
| 31 |
+
|
| 32 |
+
- (π₯ New) Jul. 23, 2024. π₯ Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642).
|
| 33 |
+
|
| 34 |
+
- (π₯ New) Jun. 2, 2024. π₯ The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main).
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Setup
|
| 38 |
+
|
| 39 |
+
First, download and set up the repo:
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
git clone https://github.com/maxin-cn/Cinemo
|
| 43 |
+
cd Cinemo
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
|
| 47 |
+
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
conda env create -f environment.yml
|
| 51 |
+
conda activate cinemo
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
## Animation
|
| 56 |
+
|
| 57 |
+
You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
|
| 58 |
+
|
| 59 |
+
```bash
|
| 60 |
+
bash pipelines/animation.sh
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
All related checkpoints will download automatically and then you will get the following results,
|
| 64 |
+
|
| 65 |
+
<table style="width:100%; text-align:center;">
|
| 66 |
+
<tr>
|
| 67 |
+
<td align="center">Input image</td>
|
| 68 |
+
<td align="center">Output video</td>
|
| 69 |
+
<td align="center">Input image</td>
|
| 70 |
+
<td align="center">Output video</td>
|
| 71 |
+
</tr>
|
| 72 |
+
<tr>
|
| 73 |
+
<td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td>
|
| 74 |
+
<td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td>
|
| 75 |
+
<td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td>
|
| 76 |
+
<td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td>
|
| 77 |
+
</tr>
|
| 78 |
+
<tr>
|
| 79 |
+
<td align="center" colspan="2">"People Walking"</td>
|
| 80 |
+
<td align="center" colspan="2">"Sea Swell"</td>
|
| 81 |
+
</tr>
|
| 82 |
+
<tr>
|
| 83 |
+
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td>
|
| 84 |
+
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td>
|
| 85 |
+
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td>
|
| 86 |
+
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td>
|
| 87 |
+
</tr>
|
| 88 |
+
<tr>
|
| 89 |
+
<td align="center" colspan="2">"Girl Dancing under the Stars"</td>
|
| 90 |
+
<td align="center" colspan="2">"Dragon Glowing Eyes"</td>
|
| 91 |
+
</tr>
|
| 92 |
+
|
| 93 |
+
</table>
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## Other Applications
|
| 97 |
+
|
| 98 |
+
You can also utilize Cinemo for other applications, such as motion transfer and video editing:
|
| 99 |
+
|
| 100 |
+
```bash
|
| 101 |
+
bash pipelines/video_editing.sh
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
All related checkpoints will download automatically and you will get the following results,
|
| 105 |
+
|
| 106 |
+
<table style="width:100%; text-align:center;">
|
| 107 |
+
<tr>
|
| 108 |
+
<td align="center">Input video</td>
|
| 109 |
+
<td align="center">First frame</td>
|
| 110 |
+
<td align="center">Edited first frame</td>
|
| 111 |
+
<td align="center">Output video</td>
|
| 112 |
+
</tr>
|
| 113 |
+
<tr>
|
| 114 |
+
<td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
| 115 |
+
<td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td>
|
| 116 |
+
<td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td>
|
| 117 |
+
<td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
|
| 118 |
+
</tr>
|
| 119 |
+
|
| 120 |
+
</table>
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
## Citation
|
| 125 |
+
If you find this work useful for your research, please consider citing it.
|
| 126 |
+
```bibtex
|
| 127 |
+
@article{ma2024cinemo,
|
| 128 |
+
title={Cinemo: Latent Diffusion Transformer for Video Generation},
|
| 129 |
+
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
|
| 130 |
+
journal={arXiv preprint arXiv:2407.15642},
|
| 131 |
+
year={2024}
|
| 132 |
+
}
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
## Acknowledgments
|
| 137 |
+
Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing.
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## License
|
| 141 |
+
The code and model weights are licensed under [LICENSE](LICENSE).
|