maximuspowers commited on
Commit
b75c854
·
verified ·
1 Parent(s): a53c355

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -7
app.py CHANGED
@@ -2,11 +2,13 @@ import torch
2
  from transformers import BertTokenizerFast, BertForTokenClassification
3
  import gradio as gr
4
 
 
5
  tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
6
  model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
7
- model.eval()
8
- model.to('cuda' if torch.cuda.is_available() else 'cpu')
9
 
 
10
  id2label = {
11
  0: 'O',
12
  1: 'B-STEREO',
@@ -18,10 +20,12 @@ id2label = {
18
  }
19
 
20
  def predict_ner_tags(sentence):
 
21
  inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
22
  input_ids = inputs['input_ids'].to(model.device)
23
  attention_mask = inputs['attention_mask'].to(model.device)
24
 
 
25
  with torch.no_grad():
26
  outputs = model(input_ids=input_ids, attention_mask=attention_mask)
27
  logits = outputs.logits
@@ -39,19 +43,31 @@ def predict_ner_tags(sentence):
39
  return result
40
 
41
  def format_output(result):
42
- formatted_output = ""
 
43
  for token, labels in result:
44
- formatted_output += f"{token}: {', '.join(labels)}\n"
 
 
 
 
 
 
 
 
 
 
45
  return formatted_output
46
 
47
  iface = gr.Interface(
48
  fn=predict_ner_tags,
49
  inputs="text",
50
- outputs="text",
51
  title="Named Entity Recognition with BERT",
52
- description="Enter a sentence to predict NER tags using BERT model trained for multi-label classification.",
53
  examples=["Tall men are so clumsy."],
54
- allow_flagging="never"
 
55
  )
56
 
57
  if __name__ == "__main__":
 
2
  from transformers import BertTokenizerFast, BertForTokenClassification
3
  import gradio as gr
4
 
5
+ # Load tokenizer and model
6
  tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
7
  model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
8
+ model.eval() # Set the model to evaluation mode
9
+ model.to('cuda' if torch.cuda.is_available() else 'cpu') # Move model to appropriate device
10
 
11
+ # Define label mappings
12
  id2label = {
13
  0: 'O',
14
  1: 'B-STEREO',
 
20
  }
21
 
22
  def predict_ner_tags(sentence):
23
+ # Tokenize the sentence
24
  inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
25
  input_ids = inputs['input_ids'].to(model.device)
26
  attention_mask = inputs['attention_mask'].to(model.device)
27
 
28
+ # Predict using the model
29
  with torch.no_grad():
30
  outputs = model(input_ids=input_ids, attention_mask=attention_mask)
31
  logits = outputs.logits
 
43
  return result
44
 
45
  def format_output(result):
46
+ # Create HTML content with formatted output
47
+ formatted_output = "<div style='font-family: Arial;'>"
48
  for token, labels in result:
49
+ styles = []
50
+ if "B-STEREO" in labels or "I-STEREO" in labels:
51
+ styles.append("border-bottom: 2px solid blue;")
52
+ if "B-GEN" in labels or "I-GEN" in labels:
53
+ styles.append("background-color: green; color: white;")
54
+ if "B-UNFAIR" in labels or "I-UNFAIR" in labels:
55
+ styles.append("border: 2px dashed red;")
56
+
57
+ style_string = " ".join(styles) if styles else ""
58
+ formatted_output += f"<span style='{style_string} padding: 3px; margin: 2px;'>{token}</span> "
59
+ formatted_output += "</div>"
60
  return formatted_output
61
 
62
  iface = gr.Interface(
63
  fn=predict_ner_tags,
64
  inputs="text",
65
+ outputs=gr.outputs.HTML(label="Output"),
66
  title="Named Entity Recognition with BERT",
67
+ description="Enter a sentence to predict NER tags using a BERT model trained for multi-label classification. Different styles represent different entity types.",
68
  examples=["Tall men are so clumsy."],
69
+ allow_flagging="never",
70
+ theme="default"
71
  )
72
 
73
  if __name__ == "__main__":