File size: 6,152 Bytes
53a7262
9b562d8
 
 
 
34ab835
9b562d8
9717ed1
7a0674a
 
9b562d8
34ab835
9b562d8
 
 
 
 
 
 
 
 
 
2c53668
 
34ab835
7cd8165
34ab835
 
 
7cd8165
 
34ab835
2c53668
 
34ab835
2c53668
 
34ab835
 
2c53668
 
 
 
34ab835
2c53668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34ab835
2c53668
 
 
 
34ab835
2c53668
9b562d8
 
 
 
 
 
 
 
2c53668
9b562d8
 
2c53668
9b562d8
 
 
2c53668
 
 
 
 
 
 
34ab835
2c53668
 
 
 
 
34ab835
2c53668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34ab835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import json
import torch
from transformers import BertTokenizerFast, BertForTokenClassification
import gradio as gr

# Initialize tokenizer and model
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner')
model.eval()
model.to('cuda' if torch.cuda.is_available() else 'cpu')

# Mapping IDs to labels
id2label = {
    0: 'O',
    1: 'B-STEREO',
    2: 'I-STEREO',
    3: 'B-GEN',
    4: 'I-GEN',
    5: 'B-UNFAIR',
    6: 'I-UNFAIR'
}

label2id = {v: k for k, v in id2label.items()}

# Entity colors for highlights
label_colors = {
    "STEREO": "rgba(255, 0, 0, 0.2)",  # Light Red
    "GEN": "rgba(0, 0, 255, 0.2)",     # Light Blue
    "UNFAIR": "rgba(0, 255, 0, 0.2)"   # Light Green
}

# Post-process entity tags
def post_process_entities(result):
    prev_entity_type = None
    for token_data in result:
        labels = token_data["labels"]
        labels = list(set(labels))

        # Handle conflicting B- and I- tags for the same entity
        for entity_type in ["GEN", "UNFAIR", "STEREO"]:
            if f"B-{entity_type}" in labels and f"I-{entity_type}" in labels:
                labels.remove(f"I-{entity_type}")

        # Handle sequence rules
        current_entity_type = None
        current_label = None
        for label in labels:
            if label.startswith("B-") or label.startswith("I-"):
                current_label = label
                current_entity_type = label[2:]

        if current_entity_type:
            if current_label.startswith("B-") and prev_entity_type == current_entity_type:
                labels.remove(current_label)
                labels.append(f"I-{current_entity_type}")
            if current_label.startswith("I-") and prev_entity_type != current_entity_type:
                labels.remove(current_label)
                labels.append(f"B-{current_entity_type}")

            prev_entity_type = current_entity_type
        else:
            prev_entity_type = None

        token_data["labels"] = labels
    return result

# Generate JSON results
def generate_json(sentence):
    inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128)
    input_ids = inputs['input_ids'].to(model.device)
    attention_mask = inputs['attention_mask'].to(model.device)

    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        probabilities = torch.sigmoid(logits)
        predicted_labels = (probabilities > 0.5).int()

    tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
    result = []
    for i, token in enumerate(tokens):
        if token not in tokenizer.all_special_tokens:
            label_indices = (predicted_labels[0][i] == 1).nonzero(as_tuple=False).squeeze(-1)
            labels = [id2label[idx.item()] for idx in label_indices] if label_indices.numel() > 0 else ['O']
            result.append({"token": token.replace("##", ""), "labels": labels})

    result = post_process_entities(result)

    return json.dumps(result, indent=4)

# Predict function
def predict_ner_tags_with_json(sentence):
    json_result = generate_json(sentence)

    result = json.loads(json_result)

    word_row = []
    stereo_row = []
    gen_row = []
    unfair_row = []

    for token_data in result:
        token = token_data["token"]
        labels = token_data["labels"]

        word_row.append(f"<span style='font-weight:bold;'>{token}</span>")

        stereo_labels = [label[2:] for label in labels if "STEREO" in label]
        stereo_row.append(
            f"<span style='background:{label_colors['STEREO']}; border-radius:6px; padding:2px 5px;'>{', '.join(stereo_labels)}</span>"
            if stereo_labels else "&nbsp;"
        )

        gen_labels = [label[2:] for label in labels if "GEN" in label]
        gen_row.append(
            f"<span style='background:{label_colors['GEN']}; border-radius:6px; padding:2px 5px;'>{', '.join(gen_labels)}</span>"
            if gen_labels else "&nbsp;"
        )

        unfair_labels = [label[2:] for label in labels if "UNFAIR" in label]
        unfair_row.append(
            f"<span style='background:{label_colors['UNFAIR']}; border-radius:6px; padding:2px 5px;'>{', '.join(unfair_labels)}</span>"
            if unfair_labels else "&nbsp;"
        )

    matrix_html = f"""
    <table style='border-collapse:collapse; width:100%; font-family:monospace; text-align:left;'>
        <tr>
            <td><strong>Text Sequence</strong></td>
            {''.join(f"<td>{word}</td>" for word in word_row)}
        </tr>
        <tr>
            <td><strong>Generalizations</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in gen_row)}
        </tr>
        <tr>
            <td><strong>Unfairness</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in unfair_row)}
        </tr>
        <tr>
            <td><strong>Stereotypes</strong></td>
            {''.join(f"<td>{cell}</td>" for cell in stereo_row)}
        </tr>
    </table>
    """

    return f"{matrix_html}<br><pre>{json_result}</pre>"

# Gradio Interface
iface = gr.Blocks()

with iface:
    with gr.Row():
        gr.Markdown(
            """
            # Social Bias Named Entity Recognition (with BERT) 🕵
            Enter a sentence to predict biased parts of speech tags. This model uses multi-label `BertForTokenClassification` to label the entities:
            - **Generalizations (GEN)**
            - **Unfairness (UNFAIR)**
            - **Stereotypes (STEREO)**

            Labels follow the BIO format. Try it out!

            - **[Blog Post](https://huggingface.co/blog/maximuspowers/bias-entity-recognition)**
            - **[Model Page](https://huggingface.co/maximuspowers/bias-detection-ner)**
            """
        )
    with gr.Row():
        input_box = gr.Textbox(label="Input Sentence")
    with gr.Row():
        output_box = gr.HTML(label="Entity Matrix and JSON Output")

    input_box.change(predict_ner_tags_with_json, inputs=[input_box], outputs=[output_box])

iface.launch(share=True)