# Use a pipeline as a high-level helper from transformers import pipeline import streamlit as st pipe_1 = pipeline("text-classification", model="mavinsao/mi-roberta-base-finetuned-mental-illness") pipe_2 = pipeline("text-classification", model="mavinsao/roberta-mental-finetuned") def ensemble_predict(text): results_1 = pipe_1(text) results_2 = pipe_2(text) # Implement your chosen ensemble strategy here. # Example with simple averaging: ensemble_scores = {} for result in results_1 + results_2: label = result['label'] score = result['score'] ensemble_scores[label] = ensemble_scores.get(label, 0) + score / 2 predicted_label = max(ensemble_scores, key=ensemble_scores.get) confidence = ensemble_scores[predicted_label] return predicted_label, confidence # Streamlit app st.title('Mental Illness Prediction') # Input text area for user input sentence = st.text_area("Enter the long sentence to predict your mental illness state:") if st.button('Predict'): # ... (input validation ... ) predicted_label, confidence = ensemble_predict(sentence) st.write("Predicted label:", predicted_label) st.write("Confidence:", confidence)