File size: 1,269 Bytes
291793f
 
c12c8cd
a681e0a
0d00d6d
 
 
 
3f7ec6a
 
 
0d00d6d
 
3f7ec6a
 
 
 
 
 
0d00d6d
3f7ec6a
 
0d00d6d
 
a681e0a
 
 
 
 
ff694a9
a681e0a
 
0d00d6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Use a pipeline as a high-level helper
from transformers import pipeline
import streamlit as st

pipe_1 = pipeline("text-classification", model="mavinsao/mi-roberta-base-finetuned-mental-illness")
pipe_2 = pipeline("text-classification", model="mavinsao/roberta-mental-finetuned")


def ensemble_predict(text): 
    # Store results from each model
    results_1 = pipe_1(text)    
    results_2 = pipe_2(text)

    ensemble_scores = {} 
    for results in [results_1, results_2]:  # Iterate through predictions
        for result in results:
            label = result['label']
            score = result['score']
            ensemble_scores[label] = ensemble_scores.get(label, 0) + score / 2  

    predicted_label = max(ensemble_scores, key=ensemble_scores.get) 
    confidence = ensemble_scores[predicted_label]  # Ensemble confidence

    return predicted_label, confidence

# Streamlit app
st.title('Mental Illness Prediction')

# Input text area for user input
sentence = st.text_area("Enter the long sentence to predict your mental illness state:")

if st.button('Predict'):
    # ... (input validation ... )
    predicted_label, confidence = ensemble_predict(sentence)
    st.write("Predicted label:", predicted_label)
    st.write("Confidence:", confidence)