Update app.py
Browse files
app.py
CHANGED
@@ -52,7 +52,7 @@ Recommendation:
|
|
52 |
|
53 |
PROMPT = PromptTemplate(
|
54 |
template=prompt_template,
|
55 |
-
input_variables=["chat_history", "question"
|
56 |
)
|
57 |
|
58 |
# Initialize the language model
|
@@ -119,11 +119,12 @@ if prompt := st.chat_input("What are you looking to learn?"):
|
|
119 |
st.markdown(prompt)
|
120 |
|
121 |
# Retrieve relevant context from the vector store based on user input
|
122 |
-
|
|
|
123 |
|
124 |
# Assistant response generator with streaming effect
|
125 |
with st.chat_message("assistant"):
|
126 |
-
response = qa_chain({"question": prompt, "context": context})
|
127 |
response_text = response["answer"]
|
128 |
|
129 |
# Simulate streaming response
|
@@ -139,4 +140,4 @@ if prompt := st.chat_input("What are you looking to learn?"):
|
|
139 |
# Optional: Add a button to clear the chat history
|
140 |
if st.button("Clear Chat History"):
|
141 |
st.session_state.messages.clear()
|
142 |
-
st.experimental_rerun()
|
|
|
52 |
|
53 |
PROMPT = PromptTemplate(
|
54 |
template=prompt_template,
|
55 |
+
input_variables=["chat_history", "question"]
|
56 |
)
|
57 |
|
58 |
# Initialize the language model
|
|
|
119 |
st.markdown(prompt)
|
120 |
|
121 |
# Retrieve relevant context from the vector store based on user input
|
122 |
+
context_documents = retriever.retrieve(prompt)
|
123 |
+
context = " ".join([doc.page_content for doc in context_documents]) # Combine the content of the retrieved documents
|
124 |
|
125 |
# Assistant response generator with streaming effect
|
126 |
with st.chat_message("assistant"):
|
127 |
+
response = qa_chain({"question": prompt, "chat_history": st.session_state.messages, "context": context})
|
128 |
response_text = response["answer"]
|
129 |
|
130 |
# Simulate streaming response
|
|
|
140 |
# Optional: Add a button to clear the chat history
|
141 |
if st.button("Clear Chat History"):
|
142 |
st.session_state.messages.clear()
|
143 |
+
st.experimental_rerun()
|