import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer model_name = "maulanayyy/codet5_code_translation-v3" # Ganti dengan nama model yang benar tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Check if GPU is available device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Pindahkan model ke GPU jika tersedia # Function to perform inference def translate_code(input_code): try: # Prepare the input text input_text = f"translate Java to C#: {input_code}" # Tokenize the input input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) # Pastikan input_ids ada di GPU # Generate the output with torch.no_grad(): outputs = model.generate(input_ids, max_length=256) # Kurangi max_length jika perlu # Decode the output translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_code # Kembalikan hasil akhir except Exception as e: print(f"Error during translation: {e}") return "An error occurred during translation." # Create Gradio interface demo = gr.Interface(fn=translate_code, inputs="text", outputs="text", title="Java to C# Code Translator", description="Enter Java code to translate it to C#.") # Launch the interface demo.launch(share=True)