maulanayyy's picture
Update app.py
33d0e71 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the model and tokenizer
model_name = "maulanayyy/codet5_code_translation-v3" # Ganti dengan nama model yang benar
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device) # Pindahkan model ke GPU jika tersedia
# Function to perform inference
def translate_code(input_code):
try:
# Prepare the input text
input_text = f"translate Java to C#: {input_code}"
# Tokenize the input
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) # Pastikan input_ids ada di GPU
# Generate the output
with torch.no_grad():
outputs = model.generate(input_ids, max_length=256) # Kurangi max_length jika perlu
# Decode the output
translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_code # Kembalikan hasil akhir
except Exception as e:
print(f"Error during translation: {e}")
return "An error occurred during translation."
# Create Gradio interface
demo = gr.Interface(fn=translate_code, inputs="text", outputs="text", title="Java to C# Code Translator", description="Enter Java code to translate it to C#.")
# Launch the interface
demo.launch(share=True)