Spaces:
Runtime error
Runtime error
File size: 5,309 Bytes
9e9fb6f 9aff4b8 9e9fb6f 13e3eda 9e9fb6f 2c8dc44 9e9fb6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import io
import base64
from typing import List, Tuple
import numpy as np
import gradio as gr
from datasets import load_dataset
from transformers import AutoProcessor, AutoModel
import torch
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# Load example dataset
dataset = load_dataset("xzuyn/dalle-3_vs_sd-v1-5_dpo", num_proc=4)
processor_name = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
model_name = "yuvalkirstain/PickScore_v1"
processor = AutoProcessor.from_pretrained(processor_name)
model = AutoModel.from_pretrained(model_name, torch_dtype=dtype).to(device)
def decode_image(image: str) -> Image:
"""
Decodes base64 string to PIL image.
Args:
image: base64 string
Returns:
PIL image
"""
img_byte_arr = base64.b64decode(image)
img_byte_arr = io.BytesIO(img_byte_arr)
img_byte_arr = Image.open(img_byte_arr)
return img_byte_arr
def get_preference(img_1: Image.Image, img_2: Image.Image, caption: str) -> Image.Image:
"""
Returns the preference of the caption for the two images.
Args:
img_1: PIL image
img_2: PIL image
caption: string
Returns:
preference image: PIL image
"""
imgs = [img_1, img_2]
logits = get_logits(caption, imgs)
preference = logits.argmax().item()
return imgs[preference]
def sample_example() -> Tuple[Image.Image, Image.Image, Image.Image, str]:
"""
Samples a random example from the dataset and displays it.
Returns:
img_1: PIL image
img_2: PIL image
preference: PIL image
caption: string
"""
example = dataset["train"][np.random.randint(0, len(dataset["train"]))]
img_1 = decode_image(example["jpg_0"])
img_2 = decode_image(example["jpg_1"])
caption = example["caption"]
imgs = [img_1, img_2]
logits = get_logits(caption, imgs)
preference = logits.argmax().item()
return (img_1, img_2, imgs[preference], caption)
def get_logits(caption: str, imgs: List[Image.Image]) -> torch.Tensor:
"""
Returns the logits for the caption and images.
Args:
caption: string
imgs: list of PIL images
Returns:
logits: torch.Tensor
"""
inputs = processor(
text=caption,
images=imgs,
return_tensors="pt",
padding=True,
truncation=True,
max_length=77,
).to(device)
inputs["pixel_values"] = (
inputs["pixel_values"].half() if device == "cuda" else inputs["pixel_values"]
)
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
return logits_per_image
### Description
title = r"""
<h1 align="center">Aesthetic Scorer: CLIP fine-tuned for DPO scoring </h1>
"""
description = r"""
<b> This is a demo for the paper <a href="https://arxiv.org/abs/2109.04436">Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation </a> </b> <br>
How to use this demo: <br>
1. Upload two images generated using the same caption.
2. Enter the caption used to generate the images.
3. Click on the "Get Preference" button to get the image which scores higher on user preferences according to the model. <br>
<b> OR </b> <br>
1. Click on the "Random Example" button to get a random example from a <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset. </a><br>
This demo demonstrates the use of this CLIP variant for DPO scoring. The scores can then be used for DPO fine-tuning with these <a href="https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo">scripts. </a><br>
Accuracy on the <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset: </a><br>
<a href="https://huggingface.co/yuvalkirstain/PickScore_v1">PickScore_v1</a> - 97.3 <br>
<a href="https://huggingface.co/CIDAS/clipseg-rd64-refined">CLIPSeg</a> - 70.9 <br>
<a href="https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K">CLIP-ViT-H-14-laion2B-s32B-b79K</a> - 82.3 <br>
"""
citation = r"""
π **Citation**
```bibtex
@inproceedings{Kirstain2023PickaPicAO,
title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation},
author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy},
year={2023}
}
```
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
first_image = gr.Image(height=400, width=400, label="First Image")
second_image = gr.Image(height=400, width=400, label="Second Image")
caption_box = gr.Textbox(lines=1, label="Caption")
with gr.Row():
image_button = gr.Button("Get Preference")
random_example = gr.Button("Random Example")
image_output = gr.Image(height=400, width=400, label="Preference")
image_button.click(
get_preference,
inputs=[first_image, second_image, caption_box],
outputs=image_output,
)
random_example.click(
sample_example, outputs=[first_image, second_image, image_output, caption_box]
)
gr.Markdown(citation)
if __name__ == "__main__":
demo.launch() |