Spaces:
Paused
Paused
File size: 1,841 Bytes
3c3f089 a21e1b7 0e460a1 3816441 a21e1b7 3c3f089 b32fabf b4f7005 b32fabf b4f7005 b32fabf 87495f8 3816441 a21e1b7 440e084 a21e1b7 50e3782 a21e1b7 50e3782 0e460a1 a21e1b7 b32fabf a21e1b7 b32fabf 3c3f089 a21e1b7 3c3f089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import { OpenAIStream, StreamingTextResponse } from "ai";
import { Configuration, OpenAIApi } from "openai-edge";
import { HfInference } from '@huggingface/inference';
import { HuggingFaceStream } from 'ai';
import { experimental_buildLlama2Prompt } from 'ai/prompts';
import { LLMStream } from "../../../utils/llm";
export const runtime = 'edge';
export default async function(req: Request) {
let { messages, aiProvider = 'openai', systemMessage, url } = await req.json();
// Set up configurations for OpenAI
const openaiConfig = new Configuration({
apiKey: process.env.OPENAI_API_KEY
} as any);
const openai = new OpenAIApi(openaiConfig, url ? url : undefined);
const Hf = new HfInference(process.env.HUGGINGFACE_API_KEY);
// Prepend the system message if it's not already there
if (messages.length === 0 || messages[0].role !== "system") {
messages = [{
role: "system",
content: systemMessage
}, ...messages];
}
if (url) {
const stream = await LLMStream(url, messages);
return new StreamingTextResponse(stream);
} else if (aiProvider === 'openai') {
const response = await openai.createChatCompletion({
model: 'gpt-4o-mini',
stream: true,
messages
});
const stream = OpenAIStream(response);
return new StreamingTextResponse(stream);
} else {
const response = Hf.textGenerationStream({
// @ts-ignore
model: aiProvider,
inputs: experimental_buildLlama2Prompt(messages),
parameters: {
repetition_penalty: 1,
return_full_text: false
}
});
const stream = HuggingFaceStream(response);
return new StreamingTextResponse(stream);
}
}
|