import gradio as gr from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from transformers import AutoTokenizer, AutoModel import torch import numpy as np from pydantic import BaseModel from typing import List, Dict, Any import time # 创建 FastAPI 应用 app = FastAPI() # 配置 CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # 加载模型和分词器 model_name = "BAAI/bge-m3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) model.eval() # OpenAI 兼容的请求模型 class EmbeddingRequest(BaseModel): input: List[str] | str model: str | None = model_name encoding_format: str | None = "float" user: str | None = None # OpenAI 兼容的响应模型 class EmbeddingResponse(BaseModel): object: str = "list" data: List[Dict[str, Any]] model: str usage: Dict[str, int] def get_embedding(text: str) -> List[float]: inputs = tokenizer( text, padding=True, truncation=True, max_length=512, return_tensors="pt" ) with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state[:, 0, :].numpy() return embeddings[0].tolist() # OpenAI 兼容的 embeddings endpoint @app.post("/v1/embeddings", response_model=EmbeddingResponse) async def create_embeddings(request: EmbeddingRequest): start_time = time.time() # 处理输入 if isinstance(request.input, str): input_texts = [request.input] else: input_texts = request.input # 获取嵌入向量 embeddings = [] total_tokens = 0 for text in input_texts: # 计算 token 数量 tokens = tokenizer.encode(text) total_tokens += len(tokens) # 获取嵌入向量 embedding = get_embedding(text) embeddings.append({ "object": "embedding", "embedding": embedding, "index": len(embeddings) }) response = EmbeddingResponse( data=embeddings, model=request.model or model_name, usage={ "prompt_tokens": total_tokens, "total_tokens": total_tokens } ) return response # Gradio 界面 def gradio_embedding(text: str) -> Dict: # 创建与 OpenAI 兼容的请求 request = EmbeddingRequest(input=text) # 调用 API 处理函数 response = create_embeddings(request) return response.dict() # 创建 Gradio 界面 demo = gr.Interface( fn=gradio_embedding, inputs=gr.Textbox(lines=3, placeholder="输入要进行编码的文本..."), outputs=gr.Json(), title="BGE-M3 Embeddings (OpenAI 兼容格式)", description="输入文本,获取其对应的嵌入向量,返回格式与 OpenAI API 兼容。", examples=[ ["这是一个示例文本。"], ["人工智能正在改变世界。"] ] ) # 启动服务 if __name__ == "__main__": import uvicorn # 首先启动 Gradio demo.queue() # 然后启动 FastAPI config = uvicorn.Config( app=app, host="0.0.0.0", port=7860, log_level="info" ) server = uvicorn.Server(config) server.run()