Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from fastapi import FastAPI, HTTPException
|
3 |
-
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import torch
|
6 |
-
import
|
|
|
|
|
7 |
from pydantic import BaseModel
|
8 |
from typing import List, Dict, Any
|
9 |
import time
|
@@ -26,20 +26,19 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
26 |
model = AutoModel.from_pretrained(model_name)
|
27 |
model.eval()
|
28 |
|
29 |
-
# OpenAI 兼容的请求模型
|
30 |
class EmbeddingRequest(BaseModel):
|
31 |
input: List[str] | str
|
32 |
model: str | None = model_name
|
33 |
encoding_format: str | None = "float"
|
34 |
user: str | None = None
|
35 |
|
36 |
-
# OpenAI 兼容的响应模型
|
37 |
class EmbeddingResponse(BaseModel):
|
38 |
object: str = "list"
|
39 |
data: List[Dict[str, Any]]
|
40 |
model: str
|
41 |
usage: Dict[str, int]
|
42 |
|
|
|
43 |
def get_embedding(text: str) -> List[float]:
|
44 |
inputs = tokenizer(
|
45 |
text,
|
@@ -47,35 +46,29 @@ def get_embedding(text: str) -> List[float]:
|
|
47 |
truncation=True,
|
48 |
max_length=512,
|
49 |
return_tensors="pt"
|
50 |
-
)
|
51 |
|
52 |
with torch.no_grad():
|
53 |
outputs = model(**inputs)
|
54 |
-
embeddings = outputs.last_hidden_state[:, 0, :].numpy()
|
55 |
|
56 |
return embeddings[0].tolist()
|
57 |
|
58 |
-
# OpenAI 兼容的 embeddings endpoint
|
59 |
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
|
|
60 |
async def create_embeddings(request: EmbeddingRequest):
|
61 |
-
start_time = time.time()
|
62 |
-
|
63 |
-
# 处理输入
|
64 |
if isinstance(request.input, str):
|
65 |
input_texts = [request.input]
|
66 |
else:
|
67 |
input_texts = request.input
|
68 |
|
69 |
-
# 获取嵌入向量
|
70 |
embeddings = []
|
71 |
total_tokens = 0
|
72 |
|
73 |
for text in input_texts:
|
74 |
-
# 计算 token 数量
|
75 |
tokens = tokenizer.encode(text)
|
76 |
total_tokens += len(tokens)
|
77 |
|
78 |
-
# 获取嵌入向量
|
79 |
embedding = get_embedding(text)
|
80 |
|
81 |
embeddings.append({
|
@@ -95,14 +88,10 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
95 |
|
96 |
return response
|
97 |
|
98 |
-
|
99 |
def gradio_embedding(text: str) -> Dict:
|
100 |
-
# 创建与 OpenAI 兼容的请求
|
101 |
request = EmbeddingRequest(input=text)
|
102 |
-
|
103 |
-
# 调用 API 处理函数
|
104 |
response = create_embeddings(request)
|
105 |
-
|
106 |
return response.dict()
|
107 |
|
108 |
# 创建 Gradio 界面
|
@@ -118,19 +107,9 @@ demo = gr.Interface(
|
|
118 |
]
|
119 |
)
|
120 |
|
121 |
-
#
|
|
|
|
|
122 |
if __name__ == "__main__":
|
123 |
import uvicorn
|
124 |
-
|
125 |
-
# 首先启动 Gradio
|
126 |
-
demo.queue()
|
127 |
-
|
128 |
-
# 然后启动 FastAPI
|
129 |
-
config = uvicorn.Config(
|
130 |
-
app=app,
|
131 |
-
host="0.0.0.0",
|
132 |
-
port=7860,
|
133 |
-
log_level="info"
|
134 |
-
)
|
135 |
-
server = uvicorn.Server(config)
|
136 |
-
server.run()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
import torch
|
4 |
+
import spaces
|
5 |
+
from fastapi import FastAPI
|
6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from pydantic import BaseModel
|
8 |
from typing import List, Dict, Any
|
9 |
import time
|
|
|
26 |
model = AutoModel.from_pretrained(model_name)
|
27 |
model.eval()
|
28 |
|
|
|
29 |
class EmbeddingRequest(BaseModel):
|
30 |
input: List[str] | str
|
31 |
model: str | None = model_name
|
32 |
encoding_format: str | None = "float"
|
33 |
user: str | None = None
|
34 |
|
|
|
35 |
class EmbeddingResponse(BaseModel):
|
36 |
object: str = "list"
|
37 |
data: List[Dict[str, Any]]
|
38 |
model: str
|
39 |
usage: Dict[str, int]
|
40 |
|
41 |
+
@spaces.GPU()
|
42 |
def get_embedding(text: str) -> List[float]:
|
43 |
inputs = tokenizer(
|
44 |
text,
|
|
|
46 |
truncation=True,
|
47 |
max_length=512,
|
48 |
return_tensors="pt"
|
49 |
+
).to(model.device)
|
50 |
|
51 |
with torch.no_grad():
|
52 |
outputs = model(**inputs)
|
53 |
+
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
54 |
|
55 |
return embeddings[0].tolist()
|
56 |
|
|
|
57 |
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
58 |
+
@spaces.GPU()
|
59 |
async def create_embeddings(request: EmbeddingRequest):
|
|
|
|
|
|
|
60 |
if isinstance(request.input, str):
|
61 |
input_texts = [request.input]
|
62 |
else:
|
63 |
input_texts = request.input
|
64 |
|
|
|
65 |
embeddings = []
|
66 |
total_tokens = 0
|
67 |
|
68 |
for text in input_texts:
|
|
|
69 |
tokens = tokenizer.encode(text)
|
70 |
total_tokens += len(tokens)
|
71 |
|
|
|
72 |
embedding = get_embedding(text)
|
73 |
|
74 |
embeddings.append({
|
|
|
88 |
|
89 |
return response
|
90 |
|
91 |
+
@spaces.GPU()
|
92 |
def gradio_embedding(text: str) -> Dict:
|
|
|
93 |
request = EmbeddingRequest(input=text)
|
|
|
|
|
94 |
response = create_embeddings(request)
|
|
|
95 |
return response.dict()
|
96 |
|
97 |
# 创建 Gradio 界面
|
|
|
107 |
]
|
108 |
)
|
109 |
|
110 |
+
# 挂载 Gradio 应用到 FastAPI
|
111 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
112 |
+
|
113 |
if __name__ == "__main__":
|
114 |
import uvicorn
|
115 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|