Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,170 @@
|
|
|
|
1 |
from threading import Thread
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
4 |
import spaces
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained("agentica-org/DeepScaleR-1.5B-Preview")
|
6 |
-
model = AutoModelForCausalLM.from_pretrained("agentica-org/DeepScaleR-1.5B-Preview", device_map='auto')
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def preprocess_messages(history):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
if user_msg:
|
17 |
-
|
18 |
-
if
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
def predict(history, max_length, top_p, temperature):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
generate_kwargs = {
|
32 |
-
"input_ids":
|
33 |
-
"attention_mask": model_inputs["attention_mask"],
|
34 |
-
"streamer": streamer,
|
35 |
"max_new_tokens": max_length,
|
36 |
"do_sample": True,
|
37 |
"top_p": top_p,
|
38 |
"temperature": temperature,
|
39 |
"repetition_penalty": 1.2,
|
|
|
|
|
|
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
45 |
t.start()
|
|
|
|
|
|
|
46 |
for new_token in streamer:
|
47 |
-
|
48 |
-
|
49 |
yield history
|
50 |
|
51 |
-
|
|
|
|
|
52 |
def main():
|
53 |
with gr.Blocks() as demo:
|
54 |
-
gr.HTML("
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
chatbot = gr.Chatbot()
|
59 |
|
60 |
with gr.Row():
|
61 |
with gr.Column(scale=2):
|
62 |
-
user_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
63 |
submitBtn = gr.Button("Submit")
|
64 |
emptyBtn = gr.Button("Clear History")
|
65 |
with gr.Column(scale=1):
|
66 |
-
max_length = gr.Slider(
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def user(query, history):
|
72 |
return "", history + [[query, ""]]
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
-
emptyBtn.click(lambda: (None, None), None, [chatbot], queue=False)
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
-
main()
|
|
|
1 |
+
# app.py
|
2 |
from threading import Thread
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
5 |
+
import torch
|
6 |
import spaces
|
|
|
|
|
|
|
7 |
|
8 |
+
# ---------------------------------------------
|
9 |
+
# 1. 加载模型与 Tokenizer
|
10 |
+
# ---------------------------------------------
|
11 |
+
# 如果你的模型需要加速/量化等特殊配置,可在 from_pretrained() 中添加相应参数
|
12 |
+
# 例如 device_map='auto' 或 trust_remote_code=True 等
|
13 |
+
model_name = "agentica-org/DeepScaleR-1.5B-Preview"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
16 |
+
|
17 |
+
# 根据需要加上 .half()/.float()/.quantize() 等操作
|
18 |
+
# 例如
|
19 |
+
# model.half()
|
20 |
+
# 或者
|
21 |
+
# model = model.quantize(4/8) # 如果你的模型和环境支持
|
22 |
+
|
23 |
+
# ---------------------------------------------
|
24 |
+
# 2. 对话历史处理
|
25 |
+
# ---------------------------------------------
|
26 |
def preprocess_messages(history):
|
27 |
+
"""
|
28 |
+
将所有的用户与回复消息拼成一个文本 prompt。
|
29 |
+
这里仅示例最简单的形式:
|
30 |
+
User: ...
|
31 |
+
Assistant: ...
|
32 |
+
最后再接上 "Assistant: " 用于提示模型继续生成。
|
33 |
+
你也可以修改为自己需要的对话模板。
|
34 |
+
"""
|
35 |
+
prompt = ""
|
36 |
+
for user_msg, assistant_msg in history:
|
37 |
if user_msg:
|
38 |
+
prompt += f"User: {user_msg}\n"
|
39 |
+
if assistant_msg:
|
40 |
+
prompt += f"Assistant: {assistant_msg}\n"
|
41 |
+
|
42 |
+
# 继续生成时,让模型再续写 "Assistant:"
|
43 |
+
prompt += "Assistant: "
|
44 |
+
return prompt
|
45 |
+
|
46 |
+
# ---------------------------------------------
|
47 |
+
# 3. 预测函数
|
48 |
+
# ---------------------------------------------
|
49 |
+
@spaces.GPU() # 使用 huggingface spaces 的 GPU 装饰器
|
50 |
def predict(history, max_length, top_p, temperature):
|
51 |
+
"""
|
52 |
+
输入为 history(对话历史)和若干超参,输出流式生成的结果。
|
53 |
+
每生成一个 token,就通过 yield 返回给 Gradio,更新界面。
|
54 |
+
"""
|
55 |
+
prompt = preprocess_messages(history)
|
56 |
+
|
57 |
+
# 组装输入
|
58 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
59 |
+
input_ids = inputs["input_ids"].to(model.device)
|
60 |
+
|
61 |
+
# 使用 TextIteratorStreamer 来实现流式输出
|
62 |
+
streamer = TextIteratorStreamer(
|
63 |
+
tokenizer=tokenizer,
|
64 |
+
timeout=60,
|
65 |
+
skip_prompt=True,
|
66 |
+
skip_special_tokens=True
|
67 |
+
)
|
68 |
+
|
69 |
generate_kwargs = {
|
70 |
+
"input_ids": input_ids,
|
|
|
|
|
71 |
"max_new_tokens": max_length,
|
72 |
"do_sample": True,
|
73 |
"top_p": top_p,
|
74 |
"temperature": temperature,
|
75 |
"repetition_penalty": 1.2,
|
76 |
+
"streamer": streamer,
|
77 |
+
# 如果需要自定义一些特殊 token 或其他参数可在此补充
|
78 |
+
# "eos_token_id": ...
|
79 |
}
|
80 |
|
81 |
+
# 启动一个线程去执行 generate,然后主线程读取流式输出
|
|
|
82 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
83 |
t.start()
|
84 |
+
|
85 |
+
# history[-1][1] 存放当前最新的 assistant 回复,因此不断累加
|
86 |
+
partial_output = ""
|
87 |
for new_token in streamer:
|
88 |
+
partial_output += new_token
|
89 |
+
history[-1][1] = partial_output
|
90 |
yield history
|
91 |
|
92 |
+
# ---------------------------------------------
|
93 |
+
# 4. 搭建 Gradio 界面
|
94 |
+
# ---------------------------------------------
|
95 |
def main():
|
96 |
with gr.Blocks() as demo:
|
97 |
+
gr.HTML("<h1 align='center'>DeepScaleR-1.5B-Preview Chat Demo</h1>")
|
98 |
|
99 |
+
# 聊天窗口
|
100 |
+
chatbot = gr.Chatbot()
|
|
|
101 |
|
102 |
with gr.Row():
|
103 |
with gr.Column(scale=2):
|
104 |
+
user_input = gr.Textbox(
|
105 |
+
show_label=True,
|
106 |
+
placeholder="请输入您的问题...",
|
107 |
+
label="User Input"
|
108 |
+
)
|
109 |
submitBtn = gr.Button("Submit")
|
110 |
emptyBtn = gr.Button("Clear History")
|
111 |
with gr.Column(scale=1):
|
112 |
+
max_length = gr.Slider(
|
113 |
+
minimum=0,
|
114 |
+
maximum=2048, # 根据模型能力自行调整
|
115 |
+
value=512,
|
116 |
+
step=1,
|
117 |
+
label="Max New Tokens",
|
118 |
+
interactive=True
|
119 |
+
)
|
120 |
+
top_p = gr.Slider(
|
121 |
+
minimum=0,
|
122 |
+
maximum=1,
|
123 |
+
value=0.8,
|
124 |
+
step=0.01,
|
125 |
+
label="Top P",
|
126 |
+
interactive=True
|
127 |
+
)
|
128 |
+
temperature = gr.Slider(
|
129 |
+
minimum=0.01,
|
130 |
+
maximum=2.0,
|
131 |
+
value=0.7,
|
132 |
+
step=0.01,
|
133 |
+
label="Temperature",
|
134 |
+
interactive=True
|
135 |
+
)
|
136 |
+
|
137 |
+
# 用于将用户输入插入到 chatbot 历史中
|
138 |
def user(query, history):
|
139 |
return "", history + [[query, ""]]
|
140 |
|
141 |
+
# Submit:
|
142 |
+
# 1) user() -> 新增一条 (user输入,"") 的对话记录
|
143 |
+
# 2) predict() -> 基于更新后的 history 进行生成
|
144 |
+
submitBtn.click(
|
145 |
+
fn=user,
|
146 |
+
inputs=[user_input, chatbot],
|
147 |
+
outputs=[user_input, chatbot],
|
148 |
+
queue=False
|
149 |
+
).then(
|
150 |
+
fn=predict,
|
151 |
+
inputs=[chatbot, max_length, top_p, temperature],
|
152 |
+
outputs=chatbot
|
153 |
)
|
|
|
154 |
|
155 |
+
# Clear: 清空对话历史
|
156 |
+
def clear_history():
|
157 |
+
return [], []
|
158 |
+
emptyBtn.click(
|
159 |
+
fn=clear_history,
|
160 |
+
inputs=[],
|
161 |
+
outputs=[chatbot, user_input],
|
162 |
+
queue=False
|
163 |
+
)
|
164 |
|
165 |
+
# 可选:让 Gradio 自动对排队请求进行调度
|
166 |
+
demo.queue()
|
167 |
+
demo.launch()
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
+
main()
|