Spaces:
Sleeping
Sleeping
fixing image input processing
Browse files
app.py
CHANGED
|
@@ -8,6 +8,8 @@ import os
|
|
| 8 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
| 9 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
| 10 |
|
|
|
|
|
|
|
| 11 |
def cityscapes_palette():
|
| 12 |
"""Cityscapes palette for external use."""
|
| 13 |
return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
|
|
@@ -42,13 +44,19 @@ def annotation(image:ImageDraw, color_seg:np.array):
|
|
| 42 |
sub_square_seg = reduced_seg[ y:y+step_size, x:x+step_size]
|
| 43 |
# print(f"{sub_square_seg.shape=}, {sub_square_seg.sum()}")
|
| 44 |
|
| 45 |
-
if (sub_square_seg.sum() >
|
| 46 |
print("light found at square ", x, y)
|
| 47 |
draw.rectangle([(x, y), (x + step_size, y + step_size)], outline=128, width=3)
|
| 48 |
|
| 49 |
-
def call(image:
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
inputs = feature_extractor(images=resized_image, return_tensors="pt")
|
| 53 |
|
| 54 |
outputs = model(**inputs)
|
|
@@ -58,7 +66,7 @@ def call(image: Image):
|
|
| 58 |
# First, rescale logits to original image size
|
| 59 |
interpolated_logits = nn.functional.interpolate(
|
| 60 |
outputs.logits,
|
| 61 |
-
size=resized_image.size[::-1], # (height, width)
|
| 62 |
mode='bilinear',
|
| 63 |
align_corners=False)
|
| 64 |
print(f"{interpolated_logits.shape=}, {outputs.logits.shape=}") # 1, 19, 1024, 1024
|
|
@@ -85,8 +93,8 @@ def call(image: Image):
|
|
| 85 |
|
| 86 |
return out_im_file
|
| 87 |
|
| 88 |
-
original_image = Image.open("./examples/1.jpg")
|
| 89 |
-
print(f"{np.array(original_image).shape=}") # eg 729, 1000, 3
|
| 90 |
|
| 91 |
# out = call(original_image)
|
| 92 |
# out.save("out2.jpeg")
|
|
@@ -101,7 +109,11 @@ iface = gr.Interface(fn=call,
|
|
| 101 |
description=description,
|
| 102 |
examples=[
|
| 103 |
os.path.join(os.path.dirname(__file__), "examples/1.jpg"),
|
| 104 |
-
os.path.join(os.path.dirname(__file__), "examples/2.jpg")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
],
|
| 106 |
thumbnail="thumbnail.webp")
|
| 107 |
iface.launch()
|
|
|
|
| 8 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
| 9 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
| 10 |
|
| 11 |
+
# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
|
| 12 |
+
|
| 13 |
def cityscapes_palette():
|
| 14 |
"""Cityscapes palette for external use."""
|
| 15 |
return [[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156],
|
|
|
|
| 44 |
sub_square_seg = reduced_seg[ y:y+step_size, x:x+step_size]
|
| 45 |
# print(f"{sub_square_seg.shape=}, {sub_square_seg.sum()}")
|
| 46 |
|
| 47 |
+
if (sub_square_seg.sum() > 100000):
|
| 48 |
print("light found at square ", x, y)
|
| 49 |
draw.rectangle([(x, y), (x + step_size, y + step_size)], outline=128, width=3)
|
| 50 |
|
| 51 |
+
def call(image): #nparray
|
| 52 |
+
|
| 53 |
+
resized = Image.fromarray(image).resize((1024,1024))
|
| 54 |
+
resized_image = np.array(resized)
|
| 55 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
| 56 |
+
|
| 57 |
+
# resized_image = Image.fromarray(resized_image_np)
|
| 58 |
+
# print(f"{resized_image=}")
|
| 59 |
+
|
| 60 |
inputs = feature_extractor(images=resized_image, return_tensors="pt")
|
| 61 |
|
| 62 |
outputs = model(**inputs)
|
|
|
|
| 66 |
# First, rescale logits to original image size
|
| 67 |
interpolated_logits = nn.functional.interpolate(
|
| 68 |
outputs.logits,
|
| 69 |
+
size=[1024, 1024], #resized_image.size[::-1], # (height, width)
|
| 70 |
mode='bilinear',
|
| 71 |
align_corners=False)
|
| 72 |
print(f"{interpolated_logits.shape=}, {outputs.logits.shape=}") # 1, 19, 1024, 1024
|
|
|
|
| 93 |
|
| 94 |
return out_im_file
|
| 95 |
|
| 96 |
+
# original_image = Image.open("./examples/1.jpg")
|
| 97 |
+
# print(f"{np.array(original_image).shape=}") # eg 729, 1000, 3
|
| 98 |
|
| 99 |
# out = call(original_image)
|
| 100 |
# out.save("out2.jpeg")
|
|
|
|
| 109 |
description=description,
|
| 110 |
examples=[
|
| 111 |
os.path.join(os.path.dirname(__file__), "examples/1.jpg"),
|
| 112 |
+
os.path.join(os.path.dirname(__file__), "examples/2.jpg"),
|
| 113 |
+
os.path.join(os.path.dirname(__file__), "examples/3.jpg"),
|
| 114 |
+
os.path.join(os.path.dirname(__file__), "examples/4.jpg"),
|
| 115 |
+
os.path.join(os.path.dirname(__file__), "examples/5.jpg"),
|
| 116 |
+
os.path.join(os.path.dirname(__file__), "examples/6.jpg"),
|
| 117 |
],
|
| 118 |
thumbnail="thumbnail.webp")
|
| 119 |
iface.launch()
|