Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,53 +27,6 @@ async def test_endpoint(message: dict):
|
|
27 |
return response
|
28 |
|
29 |
|
30 |
-
@app.post("/chat/")
|
31 |
-
async def chat_endpoint(message: dict):
|
32 |
-
if "text" not in message:
|
33 |
-
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
34 |
-
|
35 |
-
chat_message = message["text"]
|
36 |
-
response_text = generate_chat_response(chat_message)
|
37 |
-
|
38 |
-
return {"response": response_text}
|
39 |
-
|
40 |
-
def generate_chat_response(text: str):
|
41 |
-
model = AutoModelForCausalLM.from_pretrained(
|
42 |
-
MODEL_ID,
|
43 |
-
torch_dtype=torch.bfloat16,
|
44 |
-
low_cpu_mem_usage=True,
|
45 |
-
trust_remote_code=True
|
46 |
-
)
|
47 |
-
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
49 |
-
|
50 |
-
conversation = [{"role": "user", "content": text}]
|
51 |
-
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
52 |
-
return_tensors="pt", return_dict=True).to(model.device)
|
53 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
54 |
-
|
55 |
-
generate_kwargs = dict(
|
56 |
-
max_length=4096,
|
57 |
-
streamer=streamer,
|
58 |
-
do_sample=True,
|
59 |
-
top_p=0.9,
|
60 |
-
top_k=50,
|
61 |
-
temperature=0.7,
|
62 |
-
repetition_penalty=1.0,
|
63 |
-
eos_token_id=[151329, 151336, 151338],
|
64 |
-
)
|
65 |
-
gen_kwargs = {**input_ids, **generate_kwargs}
|
66 |
-
|
67 |
-
with torch.no_grad():
|
68 |
-
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
69 |
-
thread.start()
|
70 |
-
buffer = ""
|
71 |
-
for new_text in streamer:
|
72 |
-
buffer += new_text
|
73 |
-
|
74 |
-
return buffer
|
75 |
-
|
76 |
-
|
77 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
78 |
|
79 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -252,6 +205,74 @@ EXAMPLES = [
|
|
252 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
253 |
]
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
256 |
gr.HTML(TITLE)
|
257 |
gr.HTML(DESCRIPTION)
|
|
|
27 |
return response
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
31 |
|
32 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
205 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
206 |
]
|
207 |
|
208 |
+
# Definir la estructura del mensaje utilizando Pydantic
|
209 |
+
class Message(BaseModel):
|
210 |
+
text: str
|
211 |
+
file: Optional[UploadFile] = None
|
212 |
+
|
213 |
+
# Definir la función simple_chat
|
214 |
+
def simple_chat(message: Message, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
215 |
+
# Cargar el modelo preentrenado
|
216 |
+
model = AutoModelForCausalLM.from_pretrained(
|
217 |
+
MODEL_ID,
|
218 |
+
torch_dtype=torch.bfloat16,
|
219 |
+
low_cpu_mem_usage=True,
|
220 |
+
trust_remote_code=True
|
221 |
+
)
|
222 |
+
|
223 |
+
conversation = []
|
224 |
+
|
225 |
+
# Procesar el mensaje
|
226 |
+
if message.file:
|
227 |
+
file_contents = message.file.file.read()
|
228 |
+
# Aquí deberías procesar el archivo como corresponda, por ejemplo:
|
229 |
+
# choice, contents = mode_load(file_contents)
|
230 |
+
# Por ahora solo agregaremos un marcador de posición
|
231 |
+
choice = "doc"
|
232 |
+
contents = "Contenido del archivo"
|
233 |
+
if choice == "image":
|
234 |
+
conversation.append({"role": "user", "image": contents, "content": message.text})
|
235 |
+
elif choice == "doc":
|
236 |
+
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message.text
|
237 |
+
conversation.append({"role": "user", "content": format_msg})
|
238 |
+
else:
|
239 |
+
conversation.append({"role": "user", "content": message.text})
|
240 |
+
|
241 |
+
# Preparar entrada para el modelo
|
242 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
243 |
+
return_tensors="pt", return_dict=True).to(model.device)
|
244 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
245 |
+
|
246 |
+
# Configurar parámetros de generación
|
247 |
+
generate_kwargs = dict(
|
248 |
+
max_length=max_length,
|
249 |
+
streamer=streamer,
|
250 |
+
do_sample=True,
|
251 |
+
top_p=top_p,
|
252 |
+
top_k=top_k,
|
253 |
+
temperature=temperature,
|
254 |
+
repetition_penalty=penalty,
|
255 |
+
eos_token_id=[151329, 151336, 151338],
|
256 |
+
)
|
257 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
258 |
+
|
259 |
+
# Generar respuesta de manera asíncrona
|
260 |
+
def generate():
|
261 |
+
with torch.no_grad():
|
262 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
263 |
+
thread.start()
|
264 |
+
buffer = ""
|
265 |
+
for new_text in streamer:
|
266 |
+
buffer += new_text
|
267 |
+
yield buffer.encode('utf-8')
|
268 |
+
|
269 |
+
return StreamingResponse(generate(), media_type="text/plain")
|
270 |
+
|
271 |
+
# Definir la ruta en FastAPI
|
272 |
+
@app.post("/chat")
|
273 |
+
async def chat(message: Message):
|
274 |
+
return simple_chat(message)
|
275 |
+
|
276 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
277 |
gr.HTML(TITLE)
|
278 |
gr.HTML(DESCRIPTION)
|