Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,17 +5,27 @@ import spaces
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
-
from fastapi import FastAPI, UploadFile, File, Form
|
9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
10 |
-
from pydantic import BaseModel
|
11 |
-
from typing import Optional, List
|
12 |
-
import logging
|
13 |
|
14 |
-
import
|
15 |
import docx
|
16 |
from pptx import Presentation
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
|
|
19 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
20 |
MODEL_ID = MODEL_LIST[0]
|
21 |
MODEL_NAME = "GLM-4vq"
|
@@ -36,18 +46,23 @@ h1 {
|
|
36 |
}
|
37 |
"""
|
38 |
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
40 |
|
|
|
|
|
41 |
def extract_text(path):
|
42 |
return open(path, 'r').read()
|
43 |
|
|
|
44 |
def extract_pdf(path):
|
45 |
-
doc =
|
46 |
text = ""
|
47 |
for page in doc:
|
48 |
text += page.get_text()
|
49 |
return text
|
50 |
|
|
|
51 |
def extract_docx(path):
|
52 |
doc = docx.Document(path)
|
53 |
data = []
|
@@ -56,6 +71,7 @@ def extract_docx(path):
|
|
56 |
content = '\n\n'.join(data)
|
57 |
return content
|
58 |
|
|
|
59 |
def extract_pptx(path):
|
60 |
prs = Presentation(path)
|
61 |
text = ""
|
@@ -65,6 +81,7 @@ def extract_pptx(path):
|
|
65 |
text += shape.text + "\n"
|
66 |
return text
|
67 |
|
|
|
68 |
def mode_load(path):
|
69 |
choice = ""
|
70 |
file_type = path.split(".")[-1]
|
@@ -82,6 +99,7 @@ def mode_load(path):
|
|
82 |
print(content[:100])
|
83 |
return choice, content[:5000]
|
84 |
|
|
|
85 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
86 |
content = Image.open(path).convert('RGB')
|
87 |
choice = "image"
|
@@ -90,6 +108,7 @@ def mode_load(path):
|
|
90 |
else:
|
91 |
raise gr.Error("Oops, unsupported files.")
|
92 |
|
|
|
93 |
@spaces.GPU()
|
94 |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
95 |
|
@@ -113,9 +132,11 @@ def stream_chat(message, history: list, temperature: float, max_length: int, top
|
|
113 |
conversation.append({"role": "user", "content": format_msg})
|
114 |
else:
|
115 |
if len(history) == 0:
|
|
|
116 |
contents = None
|
117 |
conversation.append({"role": "user", "content": message['text']})
|
118 |
else:
|
|
|
119 |
for prompt, answer in history:
|
120 |
if answer is None:
|
121 |
prompt_files.append(prompt[0])
|
@@ -128,6 +149,7 @@ def stream_chat(message, history: list, temperature: float, max_length: int, top
|
|
128 |
choice = ""
|
129 |
conversation.append({"role": "user", "image": "", "content": message['text']})
|
130 |
|
|
|
131 |
if choice == "image":
|
132 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
133 |
elif choice == "doc":
|
@@ -159,11 +181,18 @@ def stream_chat(message, history: list, temperature: float, max_length: int, top
|
|
159 |
buffer += new_text
|
160 |
yield buffer
|
161 |
|
162 |
-
|
|
|
|
|
|
|
163 |
chat_input = gr.MultimodalTextbox(
|
164 |
interactive=True,
|
165 |
placeholder="Enter message or upload a file ...",
|
166 |
show_label=False,
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
|
169 |
EXAMPLES = [
|
@@ -173,80 +202,14 @@ EXAMPLES = [
|
|
173 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
174 |
]
|
175 |
|
176 |
-
app = FastAPI()
|
177 |
-
app.add_middleware(
|
178 |
-
CORSMiddleware,
|
179 |
-
allow_origins=["*"],
|
180 |
-
allow_credentials=True,
|
181 |
-
allow_methods=["*"],
|
182 |
-
allow_headers=["*"],
|
183 |
-
)
|
184 |
-
|
185 |
-
class ChatMessage(BaseModel):
|
186 |
-
text: str
|
187 |
-
history: Optional[List] = []
|
188 |
-
temperature: float = 0.8
|
189 |
-
max_length: int = 4096
|
190 |
-
top_p: float = 1.0
|
191 |
-
top_k: int = 10
|
192 |
-
penalty: float = 1.0
|
193 |
-
|
194 |
-
|
195 |
-
@app.post("/test/")
|
196 |
-
async def test_endpoint(message: dict):
|
197 |
-
logging.info(f"Received message: {message}")
|
198 |
-
if "text" not in message:
|
199 |
-
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
200 |
-
|
201 |
-
response = {"message": f"Received your message: {message['text']}"}
|
202 |
-
return response
|
203 |
-
|
204 |
-
@app.post("/chat/")
|
205 |
-
async def chat_endpoint(message: ChatMessage, file: Optional[UploadFile] = None):
|
206 |
-
conversation = []
|
207 |
-
if file:
|
208 |
-
path = f"/tmp/{file.filename}"
|
209 |
-
with open(path, "wb") as f:
|
210 |
-
f.write(await file.read())
|
211 |
-
choice, contents = mode_load(path)
|
212 |
-
if choice == "image":
|
213 |
-
conversation.append({"role": "user", "image": contents, "content": message.text})
|
214 |
-
elif choice == "doc":
|
215 |
-
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message.text
|
216 |
-
conversation.append({"role": "user", "content": format_msg})
|
217 |
-
else:
|
218 |
-
conversation.append({"role": "user", "content": message.text})
|
219 |
-
|
220 |
-
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
221 |
-
return_tensors="pt", return_dict=True).to(model.device)
|
222 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
223 |
-
|
224 |
-
generate_kwargs = dict(
|
225 |
-
max_length=message.max_length,
|
226 |
-
streamer=streamer,
|
227 |
-
do_sample=True,
|
228 |
-
top_p=message.top_p,
|
229 |
-
top_k=message.top_k,
|
230 |
-
temperature=message.temperature,
|
231 |
-
repetition_penalty=message.penalty,
|
232 |
-
eos_token_id=[151329, 151336, 151338],
|
233 |
-
)
|
234 |
-
gen_kwargs = {**input_ids, **generate_kwargs}
|
235 |
-
|
236 |
-
with torch.no_grad():
|
237 |
-
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
238 |
-
thread.start()
|
239 |
-
buffer = ""
|
240 |
-
for new_text in streamer:
|
241 |
-
buffer += new_text
|
242 |
-
return {"response": buffer}
|
243 |
-
|
244 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
245 |
gr.HTML(TITLE)
|
246 |
gr.HTML(DESCRIPTION)
|
247 |
gr.ChatInterface(
|
248 |
fn=stream_chat,
|
249 |
multimodal=True,
|
|
|
|
|
250 |
textbox=chat_input,
|
251 |
chatbot=chatbot,
|
252 |
fill_height=True,
|
@@ -297,6 +260,5 @@ with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
|
297 |
gr.Examples(EXAMPLES, [chat_input])
|
298 |
|
299 |
if __name__ == "__main__":
|
300 |
-
|
301 |
-
|
302 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
import pymupdf
|
10 |
import docx
|
11 |
from pptx import Presentation
|
12 |
|
13 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
14 |
+
from fastapi.responses import HTMLResponse
|
15 |
+
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
@app.post("/test/")
|
19 |
+
async def test_endpoint(message: dict):
|
20 |
+
if "text" not in message:
|
21 |
+
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
22 |
+
|
23 |
+
response = {"message": f"Received your message: {message['text']}"}
|
24 |
+
return response
|
25 |
+
|
26 |
+
|
27 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
28 |
+
|
29 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
30 |
MODEL_ID = MODEL_LIST[0]
|
31 |
MODEL_NAME = "GLM-4vq"
|
|
|
46 |
}
|
47 |
"""
|
48 |
|
49 |
+
|
50 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
51 |
|
52 |
+
|
53 |
+
|
54 |
def extract_text(path):
|
55 |
return open(path, 'r').read()
|
56 |
|
57 |
+
|
58 |
def extract_pdf(path):
|
59 |
+
doc = pymupdf.open(path)
|
60 |
text = ""
|
61 |
for page in doc:
|
62 |
text += page.get_text()
|
63 |
return text
|
64 |
|
65 |
+
|
66 |
def extract_docx(path):
|
67 |
doc = docx.Document(path)
|
68 |
data = []
|
|
|
71 |
content = '\n\n'.join(data)
|
72 |
return content
|
73 |
|
74 |
+
|
75 |
def extract_pptx(path):
|
76 |
prs = Presentation(path)
|
77 |
text = ""
|
|
|
81 |
text += shape.text + "\n"
|
82 |
return text
|
83 |
|
84 |
+
|
85 |
def mode_load(path):
|
86 |
choice = ""
|
87 |
file_type = path.split(".")[-1]
|
|
|
99 |
print(content[:100])
|
100 |
return choice, content[:5000]
|
101 |
|
102 |
+
|
103 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
104 |
content = Image.open(path).convert('RGB')
|
105 |
choice = "image"
|
|
|
108 |
else:
|
109 |
raise gr.Error("Oops, unsupported files.")
|
110 |
|
111 |
+
|
112 |
@spaces.GPU()
|
113 |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
114 |
|
|
|
132 |
conversation.append({"role": "user", "content": format_msg})
|
133 |
else:
|
134 |
if len(history) == 0:
|
135 |
+
# raise gr.Error("Please upload an image first.")
|
136 |
contents = None
|
137 |
conversation.append({"role": "user", "content": message['text']})
|
138 |
else:
|
139 |
+
# image = Image.open(history[0][0][0])
|
140 |
for prompt, answer in history:
|
141 |
if answer is None:
|
142 |
prompt_files.append(prompt[0])
|
|
|
149 |
choice = ""
|
150 |
conversation.append({"role": "user", "image": "", "content": message['text']})
|
151 |
|
152 |
+
|
153 |
if choice == "image":
|
154 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
155 |
elif choice == "doc":
|
|
|
181 |
buffer += new_text
|
182 |
yield buffer
|
183 |
|
184 |
+
|
185 |
+
chatbot = gr.Chatbot(
|
186 |
+
#rtl=True,
|
187 |
+
)
|
188 |
chat_input = gr.MultimodalTextbox(
|
189 |
interactive=True,
|
190 |
placeholder="Enter message or upload a file ...",
|
191 |
show_label=False,
|
192 |
+
#rtl=True,
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
)
|
197 |
|
198 |
EXAMPLES = [
|
|
|
202 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
203 |
]
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
206 |
gr.HTML(TITLE)
|
207 |
gr.HTML(DESCRIPTION)
|
208 |
gr.ChatInterface(
|
209 |
fn=stream_chat,
|
210 |
multimodal=True,
|
211 |
+
|
212 |
+
|
213 |
textbox=chat_input,
|
214 |
chatbot=chatbot,
|
215 |
fill_height=True,
|
|
|
260 |
gr.Examples(EXAMPLES, [chat_input])
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
+
|
264 |
+
demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", )
|
|