Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,60 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
|
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import os
|
|
|
|
|
5 |
import pymupdf
|
6 |
import docx
|
7 |
from pptx import Presentation
|
|
|
8 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
9 |
-
from
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
|
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
MODEL_ID = MODEL_LIST[0]
|
17 |
MODEL_NAME = "GLM-4vq"
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
20 |
-
|
21 |
-
|
22 |
-
torch_dtype=torch.bfloat16,
|
23 |
-
low_cpu_mem_usage=True,
|
24 |
-
trust_remote_code=True
|
25 |
-
)
|
26 |
|
27 |
def extract_text(path):
|
28 |
return open(path, 'r').read()
|
29 |
|
|
|
30 |
def extract_pdf(path):
|
31 |
doc = pymupdf.open(path)
|
32 |
text = ""
|
@@ -34,10 +62,15 @@ def extract_pdf(path):
|
|
34 |
text += page.get_text()
|
35 |
return text
|
36 |
|
|
|
37 |
def extract_docx(path):
|
38 |
doc = docx.Document(path)
|
39 |
-
data = [
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def extract_pptx(path):
|
43 |
prs = Presentation(path)
|
@@ -48,44 +81,49 @@ def extract_pptx(path):
|
|
48 |
text += shape.text + "\n"
|
49 |
return text
|
50 |
|
|
|
51 |
def mode_load(path):
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
content = extract_pdf(path)
|
56 |
-
elif file_type
|
57 |
content = extract_docx(path)
|
58 |
-
elif file_type
|
59 |
content = extract_pptx(path)
|
60 |
else:
|
61 |
content = extract_text(path)
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
64 |
content = Image.open(path).convert('RGB')
|
65 |
-
|
|
|
|
|
66 |
else:
|
67 |
-
raise
|
68 |
|
69 |
-
@app.post("/test/")
|
70 |
-
async def test_endpoint(message: Dict[str, str]):
|
71 |
-
if "text" not in message:
|
72 |
-
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
73 |
-
|
74 |
-
response = {"message": f"Received your message: {message['text']}"}
|
75 |
-
return response
|
76 |
|
77 |
-
@
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
conversation = []
|
88 |
-
|
|
|
89 |
choice, contents = mode_load(message["files"][-1])
|
90 |
if choice == "image":
|
91 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
@@ -94,26 +132,35 @@ async def chat_endpoint(
|
|
94 |
conversation.append({"role": "user", "content": format_msg})
|
95 |
else:
|
96 |
if len(history) == 0:
|
|
|
|
|
97 |
conversation.append({"role": "user", "content": message['text']})
|
98 |
else:
|
|
|
99 |
for prompt, answer in history:
|
100 |
if answer is None:
|
|
|
101 |
conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
|
102 |
else:
|
103 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
104 |
-
if len(
|
105 |
-
choice, contents = mode_load(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
110 |
-
conversation.append({"role": "user", "content": format_msg})
|
111 |
-
else:
|
112 |
-
conversation.append({"role": "user", "content": message['text']})
|
113 |
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
116 |
-
|
117 |
generate_kwargs = dict(
|
118 |
max_length=max_length,
|
119 |
streamer=streamer,
|
@@ -121,11 +168,97 @@ async def chat_endpoint(
|
|
121 |
top_p=top_p,
|
122 |
top_k=top_k,
|
123 |
temperature=temperature,
|
124 |
-
repetition_penalty=penalty
|
|
|
125 |
)
|
126 |
-
|
|
|
127 |
with torch.no_grad():
|
|
|
|
|
128 |
buffer = ""
|
129 |
for new_text in streamer:
|
130 |
buffer += new_text
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
import pymupdf
|
10 |
import docx
|
11 |
from pptx import Presentation
|
12 |
+
|
13 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
14 |
+
from fastapi.responses import HTMLResponse
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
+
@app.post("/test/")
|
19 |
+
async def test_endpoint(message: dict):
|
20 |
+
if "text" not in message:
|
21 |
+
raise HTTPException(status_code=400, detail="Missing 'text' in request body")
|
22 |
+
|
23 |
+
response = {"message": f"Received your message: {message['text']}"}
|
24 |
+
return response
|
25 |
+
|
26 |
+
|
27 |
MODEL_LIST = ["nikravan/glm-4vq"]
|
28 |
+
|
29 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
30 |
MODEL_ID = MODEL_LIST[0]
|
31 |
MODEL_NAME = "GLM-4vq"
|
32 |
|
33 |
+
TITLE = "<h1>AI CHAT DOCS</h1>"
|
34 |
+
|
35 |
+
DESCRIPTION = f"""
|
36 |
+
<center>
|
37 |
+
<p>
|
38 |
+
<br>
|
39 |
+
USANDO MODELO: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
|
40 |
+
</center>"""
|
41 |
+
|
42 |
+
CSS = """
|
43 |
+
h1 {
|
44 |
+
text-align: center;
|
45 |
+
display: block;
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
51 |
+
|
52 |
+
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def extract_text(path):
|
55 |
return open(path, 'r').read()
|
56 |
|
57 |
+
|
58 |
def extract_pdf(path):
|
59 |
doc = pymupdf.open(path)
|
60 |
text = ""
|
|
|
62 |
text += page.get_text()
|
63 |
return text
|
64 |
|
65 |
+
|
66 |
def extract_docx(path):
|
67 |
doc = docx.Document(path)
|
68 |
+
data = []
|
69 |
+
for paragraph in doc.paragraphs:
|
70 |
+
data.append(paragraph.text)
|
71 |
+
content = '\n\n'.join(data)
|
72 |
+
return content
|
73 |
+
|
74 |
|
75 |
def extract_pptx(path):
|
76 |
prs = Presentation(path)
|
|
|
81 |
text += shape.text + "\n"
|
82 |
return text
|
83 |
|
84 |
+
|
85 |
def mode_load(path):
|
86 |
+
choice = ""
|
87 |
+
file_type = path.split(".")[-1]
|
88 |
+
print(file_type)
|
89 |
+
if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
|
90 |
+
if file_type.endswith("pdf"):
|
91 |
content = extract_pdf(path)
|
92 |
+
elif file_type.endswith("docx"):
|
93 |
content = extract_docx(path)
|
94 |
+
elif file_type.endswith("pptx"):
|
95 |
content = extract_pptx(path)
|
96 |
else:
|
97 |
content = extract_text(path)
|
98 |
+
choice = "doc"
|
99 |
+
print(content[:100])
|
100 |
+
return choice, content[:5000]
|
101 |
+
|
102 |
+
|
103 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
104 |
content = Image.open(path).convert('RGB')
|
105 |
+
choice = "image"
|
106 |
+
return choice, content
|
107 |
+
|
108 |
else:
|
109 |
+
raise gr.Error("Oops, unsupported files.")
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
@spaces.GPU()
|
113 |
+
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
114 |
+
|
115 |
+
model = AutoModelForCausalLM.from_pretrained(
|
116 |
+
MODEL_ID,
|
117 |
+
torch_dtype=torch.bfloat16,
|
118 |
+
low_cpu_mem_usage=True,
|
119 |
+
trust_remote_code=True
|
120 |
+
)
|
121 |
+
|
122 |
+
print(f'message is - {message}')
|
123 |
+
print(f'history is - {history}')
|
124 |
conversation = []
|
125 |
+
prompt_files = []
|
126 |
+
if message["files"]:
|
127 |
choice, contents = mode_load(message["files"][-1])
|
128 |
if choice == "image":
|
129 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
|
|
132 |
conversation.append({"role": "user", "content": format_msg})
|
133 |
else:
|
134 |
if len(history) == 0:
|
135 |
+
# raise gr.Error("Please upload an image first.")
|
136 |
+
contents = None
|
137 |
conversation.append({"role": "user", "content": message['text']})
|
138 |
else:
|
139 |
+
# image = Image.open(history[0][0][0])
|
140 |
for prompt, answer in history:
|
141 |
if answer is None:
|
142 |
+
prompt_files.append(prompt[0])
|
143 |
conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
|
144 |
else:
|
145 |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
146 |
+
if len(prompt_files) > 0:
|
147 |
+
choice, contents = mode_load(prompt_files[-1])
|
148 |
+
else:
|
149 |
+
choice = ""
|
150 |
+
conversation.append({"role": "user", "image": "", "content": message['text']})
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
|
153 |
+
if choice == "image":
|
154 |
+
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
155 |
+
elif choice == "doc":
|
156 |
+
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
157 |
+
conversation.append({"role": "user", "content": format_msg})
|
158 |
+
print(f"Conversation is -\n{conversation}")
|
159 |
+
|
160 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
161 |
+
return_tensors="pt", return_dict=True).to(model.device)
|
162 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
163 |
+
|
164 |
generate_kwargs = dict(
|
165 |
max_length=max_length,
|
166 |
streamer=streamer,
|
|
|
168 |
top_p=top_p,
|
169 |
top_k=top_k,
|
170 |
temperature=temperature,
|
171 |
+
repetition_penalty=penalty,
|
172 |
+
eos_token_id=[151329, 151336, 151338],
|
173 |
)
|
174 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
175 |
+
|
176 |
with torch.no_grad():
|
177 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
178 |
+
thread.start()
|
179 |
buffer = ""
|
180 |
for new_text in streamer:
|
181 |
buffer += new_text
|
182 |
+
yield buffer
|
183 |
+
|
184 |
+
|
185 |
+
chatbot = gr.Chatbot(
|
186 |
+
#rtl=True,
|
187 |
+
)
|
188 |
+
chat_input = gr.MultimodalTextbox(
|
189 |
+
interactive=True,
|
190 |
+
placeholder="Enter message or upload a file ...",
|
191 |
+
show_label=False,
|
192 |
+
#rtl=True,
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
)
|
197 |
+
|
198 |
+
EXAMPLES = [
|
199 |
+
[{"text": "Resumir Documento"}],
|
200 |
+
[{"text": "Explicar la Imagen"}],
|
201 |
+
[{"text": "¿De qué es la foto?", "files": ["perro.jpg"]}],
|
202 |
+
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
203 |
+
]
|
204 |
+
|
205 |
+
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
206 |
+
gr.HTML(TITLE)
|
207 |
+
gr.HTML(DESCRIPTION)
|
208 |
+
gr.ChatInterface(
|
209 |
+
fn=stream_chat,
|
210 |
+
multimodal=True,
|
211 |
+
|
212 |
+
|
213 |
+
textbox=chat_input,
|
214 |
+
chatbot=chatbot,
|
215 |
+
fill_height=True,
|
216 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
217 |
+
additional_inputs=[
|
218 |
+
gr.Slider(
|
219 |
+
minimum=0,
|
220 |
+
maximum=1,
|
221 |
+
step=0.1,
|
222 |
+
value=0.8,
|
223 |
+
label="Temperature",
|
224 |
+
render=False,
|
225 |
+
),
|
226 |
+
gr.Slider(
|
227 |
+
minimum=1024,
|
228 |
+
maximum=8192,
|
229 |
+
step=1,
|
230 |
+
value=4096,
|
231 |
+
label="Max Length",
|
232 |
+
render=False,
|
233 |
+
),
|
234 |
+
gr.Slider(
|
235 |
+
minimum=0.0,
|
236 |
+
maximum=1.0,
|
237 |
+
step=0.1,
|
238 |
+
value=1.0,
|
239 |
+
label="top_p",
|
240 |
+
render=False,
|
241 |
+
),
|
242 |
+
gr.Slider(
|
243 |
+
minimum=1,
|
244 |
+
maximum=20,
|
245 |
+
step=1,
|
246 |
+
value=10,
|
247 |
+
label="top_k",
|
248 |
+
render=False,
|
249 |
+
),
|
250 |
+
gr.Slider(
|
251 |
+
minimum=0.0,
|
252 |
+
maximum=2.0,
|
253 |
+
step=0.1,
|
254 |
+
value=1.0,
|
255 |
+
label="Repetition penalty",
|
256 |
+
render=False,
|
257 |
+
),
|
258 |
+
],
|
259 |
+
),
|
260 |
+
gr.Examples(EXAMPLES, [chat_input])
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
|
264 |
+
demo.queue(api_open=False).launch(show_api=False, share=False, )#server_name="0.0.0.0", )
|