Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -211,7 +211,6 @@ EXAMPLES = [
|
|
211 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
212 |
]
|
213 |
|
214 |
-
|
215 |
@spaces.GPU()
|
216 |
def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
217 |
try:
|
@@ -240,14 +239,12 @@ def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096,
|
|
240 |
elif choice == "doc":
|
241 |
message['text'] = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
242 |
conversation.append({"role": "user", "content": message['text']})
|
243 |
-
# format_msg = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
244 |
-
# conversation.append({"role": "user", "content": format_msg})
|
245 |
else:
|
246 |
conversation.append({"role": "user", "content": message['text']})
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
generate_kwargs = dict(
|
253 |
max_length=max_length,
|
@@ -259,30 +256,92 @@ def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096,
|
|
259 |
eos_token_id=[151329, 151336, 151338],
|
260 |
)
|
261 |
|
262 |
-
gen_kwargs = {**input_ids, **generate_kwargs}
|
263 |
-
|
264 |
-
for entry in conversation:
|
265 |
-
print(f"Role: {entry['role']}, Content: {entry.get('content', '')}")
|
266 |
-
|
267 |
with torch.no_grad():
|
268 |
generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
269 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
270 |
|
271 |
-
text_original = message['text'].strip()
|
272 |
-
generated_text_cleaned = generated_text.replace(text_original, "").strip()
|
273 |
-
|
274 |
print(" ")
|
275 |
print("---------")
|
276 |
print("Text: ")
|
277 |
print(" ")
|
278 |
-
print(
|
279 |
-
|
280 |
|
281 |
-
return PlainTextResponse(
|
282 |
except Exception as e:
|
283 |
return PlainTextResponse(f"Error: {str(e)}")
|
284 |
|
285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
288 |
# try:
|
|
|
211 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
212 |
]
|
213 |
|
|
|
214 |
@spaces.GPU()
|
215 |
def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
216 |
try:
|
|
|
239 |
elif choice == "doc":
|
240 |
message['text'] = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
241 |
conversation.append({"role": "user", "content": message['text']})
|
|
|
|
|
242 |
else:
|
243 |
conversation.append({"role": "user", "content": message['text']})
|
244 |
|
245 |
+
# Convierte solo el contenido relevante a IDs
|
246 |
+
# input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
|
247 |
+
input_ids = tokenizer(conversation[-1]['content'], return_tensors="pt").to(model.device)
|
248 |
|
249 |
generate_kwargs = dict(
|
250 |
max_length=max_length,
|
|
|
256 |
eos_token_id=[151329, 151336, 151338],
|
257 |
)
|
258 |
|
|
|
|
|
|
|
|
|
|
|
259 |
with torch.no_grad():
|
260 |
generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
261 |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
262 |
|
|
|
|
|
|
|
263 |
print(" ")
|
264 |
print("---------")
|
265 |
print("Text: ")
|
266 |
print(" ")
|
267 |
+
print(generated_text)
|
|
|
268 |
|
269 |
+
return PlainTextResponse(generated_text)
|
270 |
except Exception as e:
|
271 |
return PlainTextResponse(f"Error: {str(e)}")
|
272 |
|
273 |
|
274 |
+
# @spaces.GPU()
|
275 |
+
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
276 |
+
# try:
|
277 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
278 |
+
# MODEL_ID,
|
279 |
+
# torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
280 |
+
# low_cpu_mem_usage=True,
|
281 |
+
# trust_remote_code=True
|
282 |
+
# )
|
283 |
+
|
284 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
285 |
+
|
286 |
+
# conversation = []
|
287 |
+
|
288 |
+
# if "file_content" in message and message["file_content"]:
|
289 |
+
# file_content = message["file_content"]
|
290 |
+
# file_name = message["file_name"]
|
291 |
+
|
292 |
+
# with open(file_name, "wb") as f:
|
293 |
+
# f.write(file_content.read())
|
294 |
+
|
295 |
+
# choice, contents = mode_load(file_name)
|
296 |
+
|
297 |
+
# if choice == "image":
|
298 |
+
# conversation.append({"role": "user", "image": contents, "content": message['text']})
|
299 |
+
# elif choice == "doc":
|
300 |
+
# message['text'] = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
301 |
+
# conversation.append({"role": "user", "content": message['text']})
|
302 |
+
# # format_msg = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
303 |
+
# # conversation.append({"role": "user", "content": format_msg})
|
304 |
+
# else:
|
305 |
+
# conversation.append({"role": "user", "content": message['text']})
|
306 |
+
|
307 |
+
# input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
|
308 |
+
|
309 |
+
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
310 |
+
|
311 |
+
# generate_kwargs = dict(
|
312 |
+
# max_length=max_length,
|
313 |
+
# do_sample=True,
|
314 |
+
# top_p=top_p,
|
315 |
+
# top_k=top_k,
|
316 |
+
# temperature=temperature,
|
317 |
+
# repetition_penalty=penalty,
|
318 |
+
# eos_token_id=[151329, 151336, 151338],
|
319 |
+
# )
|
320 |
+
|
321 |
+
# gen_kwargs = {**input_ids, **generate_kwargs}
|
322 |
+
|
323 |
+
# for entry in conversation:
|
324 |
+
# print(f"Role: {entry['role']}, Content: {entry.get('content', '')}")
|
325 |
+
|
326 |
+
# with torch.no_grad():
|
327 |
+
# generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
328 |
+
# generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
329 |
+
|
330 |
+
# text_original = message['text'].strip()
|
331 |
+
# generated_text_cleaned = generated_text.replace(text_original, "").strip()
|
332 |
+
|
333 |
+
# print(" ")
|
334 |
+
# print("---------")
|
335 |
+
# print("Text: ")
|
336 |
+
# print(" ")
|
337 |
+
# print(generated_text_cleaned)
|
338 |
+
|
339 |
+
|
340 |
+
# return PlainTextResponse(generated_text_cleaned)
|
341 |
+
# except Exception as e:
|
342 |
+
# return PlainTextResponse(f"Error: {str(e)}")
|
343 |
+
|
344 |
+
|
345 |
|
346 |
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
347 |
# try:
|