Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -211,77 +211,6 @@ EXAMPLES = [
|
|
211 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
212 |
]
|
213 |
|
214 |
-
@spaces.GPU()
|
215 |
-
def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
216 |
-
try:
|
217 |
-
model = AutoModelForCausalLM.from_pretrained(
|
218 |
-
MODEL_ID,
|
219 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
220 |
-
low_cpu_mem_usage=True,
|
221 |
-
trust_remote_code=True
|
222 |
-
)
|
223 |
-
|
224 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
225 |
-
|
226 |
-
if "file_content" in message and message["file_content"]:
|
227 |
-
file_content = message["file_content"]
|
228 |
-
file_name = message["file_name"]
|
229 |
-
|
230 |
-
with open(file_name, "wb") as f:
|
231 |
-
f.write(file_content.read())
|
232 |
-
|
233 |
-
choice, contents = mode_load(file_name)
|
234 |
-
|
235 |
-
if choice == "image":
|
236 |
-
#input_text = message['text']
|
237 |
-
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
238 |
-
elif choice == "doc":
|
239 |
-
#input_text = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
240 |
-
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
241 |
-
conversation.append({"role": "user", "content": format_msg})
|
242 |
-
else:
|
243 |
-
#input_text = message['text']
|
244 |
-
contents = None
|
245 |
-
conversation.append({"role": "user", "content": message['text']})
|
246 |
-
|
247 |
-
# conversation = [{"role": "user", "content": input_text}]
|
248 |
-
input_ids = tokenizer(conversation[-1]['content'], return_tensors="pt").to(model.device)
|
249 |
-
|
250 |
-
generate_kwargs = dict(
|
251 |
-
max_length=max_length,
|
252 |
-
do_sample=True,
|
253 |
-
top_p=top_p,
|
254 |
-
top_k=top_k,
|
255 |
-
temperature=temperature,
|
256 |
-
repetition_penalty=penalty,
|
257 |
-
eos_token_id=[151329, 151336, 151338]
|
258 |
-
)
|
259 |
-
|
260 |
-
with torch.no_grad():
|
261 |
-
generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
262 |
-
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
263 |
-
|
264 |
-
# Process to remove any prefix or unwanted prompt
|
265 |
-
# text_original = input_text.strip()
|
266 |
-
# results_text = generated_text[len(text_original):].strip()
|
267 |
-
|
268 |
-
text_original = message['text'].strip()
|
269 |
-
results_text = generated_text.replace(text_original, "").strip()
|
270 |
-
|
271 |
-
print(" ")
|
272 |
-
print("------")
|
273 |
-
print(" ")
|
274 |
-
print(generated_text)
|
275 |
-
print(" ")
|
276 |
-
print("------")
|
277 |
-
|
278 |
-
return PlainTextResponse(results_text)
|
279 |
-
except Exception as e:
|
280 |
-
return PlainTextResponse(f"Error: {str(e)}")
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
# @spaces.GPU()
|
286 |
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
287 |
# try:
|
@@ -294,8 +223,6 @@ def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096,
|
|
294 |
|
295 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
296 |
|
297 |
-
# conversation = []
|
298 |
-
|
299 |
# if "file_content" in message and message["file_content"]:
|
300 |
# file_content = message["file_content"]
|
301 |
# file_name = message["file_name"]
|
@@ -306,18 +233,19 @@ def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096,
|
|
306 |
# choice, contents = mode_load(file_name)
|
307 |
|
308 |
# if choice == "image":
|
|
|
309 |
# conversation.append({"role": "user", "image": contents, "content": message['text']})
|
310 |
# elif choice == "doc":
|
311 |
-
#
|
312 |
-
#
|
313 |
-
#
|
314 |
-
# # conversation.append({"role": "user", "content": format_msg})
|
315 |
# else:
|
|
|
|
|
316 |
# conversation.append({"role": "user", "content": message['text']})
|
317 |
|
318 |
-
#
|
319 |
-
|
320 |
-
# streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
321 |
|
322 |
# generate_kwargs = dict(
|
323 |
# max_length=max_length,
|
@@ -326,34 +254,106 @@ def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096,
|
|
326 |
# top_k=top_k,
|
327 |
# temperature=temperature,
|
328 |
# repetition_penalty=penalty,
|
329 |
-
# eos_token_id=[151329, 151336, 151338]
|
330 |
# )
|
331 |
|
332 |
-
# gen_kwargs = {**input_ids, **generate_kwargs}
|
333 |
-
|
334 |
-
# for entry in conversation:
|
335 |
-
# print(f"Role: {entry['role']}, Content: {entry.get('content', '')}")
|
336 |
-
|
337 |
# with torch.no_grad():
|
338 |
# generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
339 |
# generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
340 |
|
|
|
|
|
|
|
|
|
341 |
# text_original = message['text'].strip()
|
342 |
-
#
|
343 |
|
344 |
-
# print(" ")
|
345 |
-
# print("---------")
|
346 |
-
# print("Text: ")
|
347 |
# print(" ")
|
348 |
-
# print(
|
349 |
-
|
|
|
|
|
|
|
350 |
|
351 |
-
# return PlainTextResponse(
|
352 |
# except Exception as e:
|
353 |
# return PlainTextResponse(f"Error: {str(e)}")
|
354 |
|
355 |
|
356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
@app.post("/chat/")
|
358 |
async def test_endpoint(
|
359 |
text: str = Form(...),
|
|
|
211 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores numéricos son decimales de cuatro dígitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vacíos, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicción con sus respectivos valores.", }]
|
212 |
]
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
# @spaces.GPU()
|
215 |
# def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
216 |
# try:
|
|
|
223 |
|
224 |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
225 |
|
|
|
|
|
226 |
# if "file_content" in message and message["file_content"]:
|
227 |
# file_content = message["file_content"]
|
228 |
# file_name = message["file_name"]
|
|
|
233 |
# choice, contents = mode_load(file_name)
|
234 |
|
235 |
# if choice == "image":
|
236 |
+
# #input_text = message['text']
|
237 |
# conversation.append({"role": "user", "image": contents, "content": message['text']})
|
238 |
# elif choice == "doc":
|
239 |
+
# #input_text = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
240 |
+
# format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
241 |
+
# conversation.append({"role": "user", "content": format_msg})
|
|
|
242 |
# else:
|
243 |
+
# #input_text = message['text']
|
244 |
+
# contents = None
|
245 |
# conversation.append({"role": "user", "content": message['text']})
|
246 |
|
247 |
+
# # conversation = [{"role": "user", "content": input_text}]
|
248 |
+
# input_ids = tokenizer(conversation[-1]['content'], return_tensors="pt").to(model.device)
|
|
|
249 |
|
250 |
# generate_kwargs = dict(
|
251 |
# max_length=max_length,
|
|
|
254 |
# top_k=top_k,
|
255 |
# temperature=temperature,
|
256 |
# repetition_penalty=penalty,
|
257 |
+
# eos_token_id=[151329, 151336, 151338]
|
258 |
# )
|
259 |
|
|
|
|
|
|
|
|
|
|
|
260 |
# with torch.no_grad():
|
261 |
# generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
262 |
# generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
263 |
|
264 |
+
# # Process to remove any prefix or unwanted prompt
|
265 |
+
# # text_original = input_text.strip()
|
266 |
+
# # results_text = generated_text[len(text_original):].strip()
|
267 |
+
|
268 |
# text_original = message['text'].strip()
|
269 |
+
# results_text = generated_text.replace(text_original, "").strip()
|
270 |
|
|
|
|
|
|
|
271 |
# print(" ")
|
272 |
+
# print("------")
|
273 |
+
# print(" ")
|
274 |
+
# print(generated_text)
|
275 |
+
# print(" ")
|
276 |
+
# print("------")
|
277 |
|
278 |
+
# return PlainTextResponse(results_text)
|
279 |
# except Exception as e:
|
280 |
# return PlainTextResponse(f"Error: {str(e)}")
|
281 |
|
282 |
|
283 |
|
284 |
+
|
285 |
+
@spaces.GPU()
|
286 |
+
def simple_chat(message: dict, temperature: float = 0.8, max_length: int = 4096, top_p: float = 1, top_k: int = 10, penalty: float = 1.0):
|
287 |
+
try:
|
288 |
+
model = AutoModelForCausalLM.from_pretrained(
|
289 |
+
MODEL_ID,
|
290 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
291 |
+
low_cpu_mem_usage=True,
|
292 |
+
trust_remote_code=True
|
293 |
+
)
|
294 |
+
|
295 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
296 |
+
|
297 |
+
conversation = []
|
298 |
+
|
299 |
+
if "file_content" in message and message["file_content"]:
|
300 |
+
file_content = message["file_content"]
|
301 |
+
file_name = message["file_name"]
|
302 |
+
|
303 |
+
with open(file_name, "wb") as f:
|
304 |
+
f.write(file_content.read())
|
305 |
+
|
306 |
+
choice, contents = mode_load(file_name)
|
307 |
+
|
308 |
+
if choice == "image":
|
309 |
+
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
310 |
+
elif choice == "doc":
|
311 |
+
message['text'] = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
312 |
+
conversation.append({"role": "user", "content": message['text']})
|
313 |
+
# format_msg = contents + "\n\n\n" + "{} files uploaded.\n".format(1) + message['text']
|
314 |
+
# conversation.append({"role": "user", "content": format_msg})
|
315 |
+
else:
|
316 |
+
conversation.append({"role": "user", "content": message['text']})
|
317 |
+
|
318 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
|
319 |
+
|
320 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
321 |
+
|
322 |
+
generate_kwargs = dict(
|
323 |
+
max_length=max_length,
|
324 |
+
do_sample=True,
|
325 |
+
top_p=top_p,
|
326 |
+
top_k=top_k,
|
327 |
+
temperature=temperature,
|
328 |
+
repetition_penalty=penalty,
|
329 |
+
eos_token_id=[151329, 151336, 151338],
|
330 |
+
)
|
331 |
+
|
332 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
333 |
+
|
334 |
+
for entry in conversation:
|
335 |
+
print(f"Role: {entry['role']}, Content: {entry.get('content', '')}")
|
336 |
+
|
337 |
+
with torch.no_grad():
|
338 |
+
generated_ids = model.generate(input_ids['input_ids'], **generate_kwargs)
|
339 |
+
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
340 |
+
|
341 |
+
text_original = message['text'].strip()
|
342 |
+
generated_text_cleaned = generated_text.replace(text_original, "").strip()
|
343 |
+
|
344 |
+
print(" ")
|
345 |
+
print("---------")
|
346 |
+
print("Text: ")
|
347 |
+
print(" ")
|
348 |
+
print(generated_text_cleaned)
|
349 |
+
|
350 |
+
|
351 |
+
return PlainTextResponse(generated_text_cleaned)
|
352 |
+
except Exception as e:
|
353 |
+
return PlainTextResponse(f"Error: {str(e)}")
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
@app.post("/chat/")
|
358 |
async def test_endpoint(
|
359 |
text: str = Form(...),
|