Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ import spaces
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
from threading import Thread
|
|
|
|
|
8 |
|
9 |
import pymupdf
|
10 |
import docx
|
@@ -33,15 +35,11 @@ h1 {
|
|
33 |
}
|
34 |
"""
|
35 |
|
36 |
-
|
37 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
def extract_text(path):
|
42 |
return open(path, 'r').read()
|
43 |
|
44 |
-
|
45 |
def extract_pdf(path):
|
46 |
doc = pymupdf.open(path)
|
47 |
text = ""
|
@@ -49,7 +47,6 @@ def extract_pdf(path):
|
|
49 |
text += page.get_text()
|
50 |
return text
|
51 |
|
52 |
-
|
53 |
def extract_docx(path):
|
54 |
doc = docx.Document(path)
|
55 |
data = []
|
@@ -58,7 +55,6 @@ def extract_docx(path):
|
|
58 |
content = '\n\n'.join(data)
|
59 |
return content
|
60 |
|
61 |
-
|
62 |
def extract_pptx(path):
|
63 |
prs = Presentation(path)
|
64 |
text = ""
|
@@ -68,7 +64,6 @@ def extract_pptx(path):
|
|
68 |
text += shape.text + "\n"
|
69 |
return text
|
70 |
|
71 |
-
|
72 |
def mode_load(path):
|
73 |
choice = ""
|
74 |
file_type = path.split(".")[-1]
|
@@ -85,20 +80,15 @@ def mode_load(path):
|
|
85 |
choice = "doc"
|
86 |
print(content[:100])
|
87 |
return choice, content[:5000]
|
88 |
-
|
89 |
-
|
90 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
91 |
content = Image.open(path).convert('RGB')
|
92 |
choice = "image"
|
93 |
return choice, content
|
94 |
-
|
95 |
else:
|
96 |
raise gr.Error("Oops, unsupported files.")
|
97 |
|
98 |
-
|
99 |
@spaces.GPU()
|
100 |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
101 |
-
|
102 |
model = AutoModelForCausalLM.from_pretrained(
|
103 |
MODEL_ID,
|
104 |
torch_dtype=torch.bfloat16,
|
@@ -136,7 +126,6 @@ def stream_chat(message, history: list, temperature: float, max_length: int, top
|
|
136 |
choice = ""
|
137 |
conversation.append({"role": "user", "image": "", "content": message['text']})
|
138 |
|
139 |
-
|
140 |
if choice == "image":
|
141 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
142 |
elif choice == "doc":
|
@@ -168,18 +157,11 @@ def stream_chat(message, history: list, temperature: float, max_length: int, top
|
|
168 |
buffer += new_text
|
169 |
yield buffer
|
170 |
|
171 |
-
|
172 |
-
chatbot = gr.Chatbot(
|
173 |
-
#rtl=True,
|
174 |
-
)
|
175 |
chat_input = gr.MultimodalTextbox(
|
176 |
interactive=True,
|
177 |
placeholder="Enter message or upload a file ...",
|
178 |
show_label=False,
|
179 |
-
#rtl=True,
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
)
|
184 |
|
185 |
EXAMPLES = [
|
@@ -189,14 +171,21 @@ EXAMPLES = [
|
|
189 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores num茅ricos son decimales de cuatro d铆gitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vac铆os, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicci贸n con sus respectivos valores.", }]
|
190 |
]
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
193 |
gr.HTML(TITLE)
|
194 |
gr.HTML(DESCRIPTION)
|
195 |
gr.ChatInterface(
|
196 |
fn=stream_chat,
|
197 |
multimodal=True,
|
198 |
-
|
199 |
-
|
200 |
textbox=chat_input,
|
201 |
chatbot=chatbot,
|
202 |
fill_height=True,
|
@@ -247,5 +236,17 @@ with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
|
247 |
gr.Examples(EXAMPLES, [chat_input])
|
248 |
|
249 |
if __name__ == "__main__":
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
import os
|
7 |
from threading import Thread
|
8 |
+
from fastapi import FastAPI
|
9 |
+
import uvicorn
|
10 |
|
11 |
import pymupdf
|
12 |
import docx
|
|
|
35 |
}
|
36 |
"""
|
37 |
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
39 |
|
|
|
|
|
40 |
def extract_text(path):
|
41 |
return open(path, 'r').read()
|
42 |
|
|
|
43 |
def extract_pdf(path):
|
44 |
doc = pymupdf.open(path)
|
45 |
text = ""
|
|
|
47 |
text += page.get_text()
|
48 |
return text
|
49 |
|
|
|
50 |
def extract_docx(path):
|
51 |
doc = docx.Document(path)
|
52 |
data = []
|
|
|
55 |
content = '\n\n'.join(data)
|
56 |
return content
|
57 |
|
|
|
58 |
def extract_pptx(path):
|
59 |
prs = Presentation(path)
|
60 |
text = ""
|
|
|
64 |
text += shape.text + "\n"
|
65 |
return text
|
66 |
|
|
|
67 |
def mode_load(path):
|
68 |
choice = ""
|
69 |
file_type = path.split(".")[-1]
|
|
|
80 |
choice = "doc"
|
81 |
print(content[:100])
|
82 |
return choice, content[:5000]
|
|
|
|
|
83 |
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
84 |
content = Image.open(path).convert('RGB')
|
85 |
choice = "image"
|
86 |
return choice, content
|
|
|
87 |
else:
|
88 |
raise gr.Error("Oops, unsupported files.")
|
89 |
|
|
|
90 |
@spaces.GPU()
|
91 |
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
|
|
92 |
model = AutoModelForCausalLM.from_pretrained(
|
93 |
MODEL_ID,
|
94 |
torch_dtype=torch.bfloat16,
|
|
|
126 |
choice = ""
|
127 |
conversation.append({"role": "user", "image": "", "content": message['text']})
|
128 |
|
|
|
129 |
if choice == "image":
|
130 |
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
131 |
elif choice == "doc":
|
|
|
157 |
buffer += new_text
|
158 |
yield buffer
|
159 |
|
160 |
+
chatbot = gr.Chatbot()
|
|
|
|
|
|
|
161 |
chat_input = gr.MultimodalTextbox(
|
162 |
interactive=True,
|
163 |
placeholder="Enter message or upload a file ...",
|
164 |
show_label=False,
|
|
|
|
|
|
|
|
|
165 |
)
|
166 |
|
167 |
EXAMPLES = [
|
|
|
171 |
[{"text": "Quiero armar un JSON, solo el JSON sin texto, que contenga los datos de la primera mitad de la tabla de la imagen (las primeras 10 jurisdicciones 901-910). Ten en cuenta que los valores num茅ricos son decimales de cuatro d铆gitos. La tabla contiene las siguientes columnas: Codigo, Nombre, Fecha Inicio, Fecha Cese, Coeficiente Ingresos, Coeficiente Gastos y Coeficiente Unificado. La tabla puede contener valores vac铆os, en ese caso dejarlos como null. Cada fila de la tabla representa una jurisdicci贸n con sus respectivos valores.", }]
|
172 |
]
|
173 |
|
174 |
+
app = FastAPI()
|
175 |
+
|
176 |
+
def test():
|
177 |
+
return "Funci贸n test llamada con 茅xito"
|
178 |
+
|
179 |
+
@app.get("/test")
|
180 |
+
def call_test():
|
181 |
+
return {"message": test()}
|
182 |
+
|
183 |
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
184 |
gr.HTML(TITLE)
|
185 |
gr.HTML(DESCRIPTION)
|
186 |
gr.ChatInterface(
|
187 |
fn=stream_chat,
|
188 |
multimodal=True,
|
|
|
|
|
189 |
textbox=chat_input,
|
190 |
chatbot=chatbot,
|
191 |
fill_height=True,
|
|
|
236 |
gr.Examples(EXAMPLES, [chat_input])
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
+
def run_fastapi():
|
240 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
241 |
+
|
242 |
+
def run_gradio():
|
243 |
+
demo.queue(api_open=False).launch(show_api=False, share=False)
|
244 |
+
|
245 |
+
fastapi_thread = Thread(target=run_fastapi)
|
246 |
+
fastapi_thread.start()
|
247 |
+
|
248 |
+
gradio_thread = Thread(target=run_gradio)
|
249 |
+
gradio_thread.start()
|
250 |
+
|
251 |
+
fastapi_thread.join()
|
252 |
+
gradio_thread.join()
|