File size: 7,122 Bytes
4d43dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c44805
4d43dca
 
 
9ab7e35
4d43dca
796bfaf
4d43dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b250460
 
4d43dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b250460
4d43dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b250460
 
 
4d43dca
 
 
 
b250460
 
0c44805
4d43dca
9ab7e35
0c44805
 
4d43dca
 
 
 
 
0c44805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d43dca
 
0c44805
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread

import pymupdf
import docx
from pptx import Presentation

MODEL_LIST = ["nikravan/glm-4vq"]

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = MODEL_LIST[0]
MODEL_NAME = "GLM-4vq"

TITLE = "<h1>AI Chat con Documentos </h1>"

DESCRIPTION = f"""
<center>
<p>Chat con Documentos. 
<br>
🚀 MODEL NOW: <a href="https://hf.co/nikravan/glm-4vq">{MODEL_NAME}</a>
</center>"""


tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

def extract_text(path):
    return open(path, 'r').read()

def extract_pdf(path):
    doc = pymupdf.open(path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text

def extract_docx(path):
    doc = docx.Document(path)
    data = []
    for paragraph in doc.paragraphs:
        data.append(paragraph.text)
    content = '\n\n'.join(data)
    return content

def extract_pptx(path):
    prs = Presentation(path)
    text = ""
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text

def mode_load(path):
    choice = ""
    file_type = path.split(".")[-1]
    print(file_type)
    if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
        if file_type.endswith("pdf"):
            content = extract_pdf(path)
        elif file_type.endswith("docx"):
            content = extract_docx(path)
        elif file_type.endswith("pptx"):
            content = extract_pptx(path)
        else:
            content = extract_text(path)
        choice = "doc"
        print(content[:100])
        return choice, content[:5000]
    elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
        content = Image.open(path).convert('RGB')
        choice = "image"
        return choice, content
    else:
        raise gr.Error("Oops, unsupported files.")

@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        trust_remote_code=True
    )
        
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    prompt_files = []
    if message["files"]:
        choice, contents = mode_load(message["files"][-1])
        if choice == "image":
            conversation.append({"role": "user", "image": contents, "content": message['text']})
        elif choice == "doc":
            format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
            conversation.append({"role": "user", "content": format_msg})
    else:
        if len(history) == 0:
            contents = None
            conversation.append({"role": "user", "content": message['text']})
        else:
            for prompt, answer in history:
                if answer is None:
                    prompt_files.append(prompt[0])
                    conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
                else:
                    conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
            if len(prompt_files) > 0:
                choice, contents = mode_load(prompt_files[-1])
            else:
                choice = ""
                conversation.append({"role": "user", "image": "", "content": message['text']})
            if choice == "image":
                conversation.append({"role": "user", "image": contents, "content": message['text']})
            elif choice == "doc":
                format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
                conversation.append({"role": "user", "content": format_msg})
    print(f"Conversation is -\n{conversation}")

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
                                              return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=max_length,
        streamer=streamer,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[151329, 151336, 151338],
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer

chatbot = gr.Chatbot(
    #rtl=True,
)
chat_input = gr.MultimodalTextbox(
    interactive=True,
    placeholder="Enter message or upload a file ...",
    show_label=False,
    #rtl=True,
)

EXAMPLES = [
    [{"text": "Quien es el Demandado?", }],
    [{"text": "Resumir el Documento", }],
    [{"text": "Explicar el Documento", }]
]

with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    with gr.Column(id="chatbot-container"):
        gr.ChatInterface(
            fn=stream_chat,
            multimodal=True,
            textbox=chat_input,
            chatbot=chatbot,
            fill_height=True,
            additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
            additional_inputs=[
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.8,
                    label="Temperature",
                    render=False,
                ),
                gr.Slider(
                    minimum=1024,
                    maximum=8192,
                    step=1,
                    value=4096,
                    label="Max Length",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                    label="top_p",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=10,
                    label="top_k",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.0,
                    label="Repetition penalty",
                    render=False,
                ),
            ],
        ),
        gr.Examples(EXAMPLES, [chat_input])

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)