from transformers import pipeline import streamlit as st import os # img2text def img_to_text(url): image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") text = image_to_text(url)[0]["generated_text"] return text # llm def generate_story(text): generator = pipeline("text-generation", model="distilgpt2") result = generator(text, max_length=20, num_return_sequences=1) return result[0]['generated_text'] # # text-to-speech def text_to_speech(text): import requests API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_TOKEN')}"} payload = { "inputs": text } response = requests.post(API_URL, headers=headers, json=payload) response.raise_for_status() with open('audio.flac', 'wb') as file: file.write(response.content) def main(): st.set_page_config(page_title="img to audio story") st.header("turn image to audio story") uploaded_file = st.file_uploader("Choose an image ... ", type="jpg") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded image", use_column_width=True) text = img_to_text(uploaded_file.name) story = generate_story(text) text_to_speech(story) with st.expander("text"): st.write(text) with st.expander("story"): st.write(story) st.audio("audio.flac") main()