Spaces:
Runtime error
Runtime error
File size: 3,307 Bytes
c28be9b d858842 c28be9b fc1f7f1 c28be9b 92370cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
from keras.layers.core import Dense,Dropout,Activation
from tensorflow.keras.layers import LSTM
#from keras.layers.recurrent import LSTM
from datetime import date
import gradio as gr
def create_dataset(dataset,time_step=15):
x_ind,y_dep =[],[]
for i in range(len(dataset)-time_step-1):
a=dataset[i:(i+time_step),0]
x_ind.append(a)
y_dep.append(dataset[i+time_step,0])
return np.array(x_ind),np.array(y_dep)
def stockprice(stockname,number_of_samples):
df_yahoo = yf.download(stockname,start='2020-09-15',end=date.today(),interval = "1h",progress=False,auto_adjust=True)
df=df_yahoo
df.index.rename('Date', inplace=True)
df=df.sort_values(by=['Date'],ignore_index=True)
min_max_scaler=MinMaxScaler(feature_range=(0,1))
dataset=min_max_scaler.fit_transform(df['Close'].values.reshape(-1,1))
train_size=int(len(df)*0.8)
test_size=len(df)-train_size
Train=dataset[0:train_size,:]
Test=dataset[train_size:len(dataset),:]
x_train,y_train=create_dataset(Train,time_step=15)
x_test,y_test=create_dataset(Test,time_step=15)
x_train=np.reshape(x_train,(x_train.shape[0],1,x_train.shape[1]))
x_test=np.reshape(x_test,(x_test.shape[0],1,x_test.shape[1]))
time_step=15
model=Sequential()
model.add(LSTM(20,input_shape=(1,time_step)))
model.add(Dense(1))
model.compile(loss="mean_squared_error",optimizer='adam')
model.fit(x_train,y_train,epochs=100,verbose=0)
y_pred=model.predict(x_test)
y_pred_RNN=min_max_scaler.inverse_transform(y_pred)
y_test=np.expand_dims(y_test,axis=1)
y_test=min_max_scaler.inverse_transform(y_test)
df1=df.drop(["Volume","Open","High","Low"],axis=1)
a= int(number_of_samples)*15
new_data = df1[-(a+1):-1]
last60prices=np.array(new_data)
last60prices=last60prices.reshape(-1, 1)
X=min_max_scaler.transform(last60prices)
TimeSteps=int(15)
NumFeatures=int(1)
number_of_samples=int(number_of_samples)
X=X.reshape(number_of_samples, NumFeatures, TimeSteps)
predicted_Price = model.predict(X)
predicted_Price = min_max_scaler.inverse_transform(predicted_Price)
pred_df=pd.DataFrame(list(map(lambda x: x[0], predicted_Price)),columns=["PREDICTIONS"])
pred_df.reset_index(inplace=True)
pred_df = pred_df.rename(columns = {'index':'HOURS'})
plt.figure(figsize=(15, 6))
range_history = len(new_data)
range_future = list(range(range_history, range_history +len(predicted_Price)))
plt.plot(np.arange(range_history), np.array(new_data),label='History')
plt.plot(range_future, np.array(predicted_Price),label='Forecasted for RNN')
plt.legend(loc='upper right')
plt.xlabel('Time step (hour)')
plt.ylabel('Stock Price')
return pred_df,plt.gcf()
interface = gr.Interface(fn = stockprice,
inputs = [gr.inputs.Textbox(lines=1, placeholder="Enter STOCK-TICKER", default="FB", label="STOCKNAME"),
gr.inputs.Slider(minimum=0, maximum=150, step=1, default=5, label="Number of Sample to Predict")],
outputs = ["dataframe","plot"],
description="LSTM STOCK PREDICTION")
interface.launch() |