masharpe's picture
Space for all-prefix-optimal coupling
bfcf71e
raw
history blame
2.08 kB
# Code to load a model.
import os
import warnings
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
def load_model(repo_id, device_map=None, bnb=None, torch_dtype='auto'):
# Try our best to get deterministic results.
if device_map is not None:
# For determinism with CUDA >= 10.2, PyTorch says to use one of these.
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
#os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16:8'
torch.use_deterministic_algorithms(True)
# Ignore a spurious warning from huggingface_hub:
# https://github.com/huggingface/transformers/issues/30618
warnings.filterwarnings('ignore', message="`resume_download` is deprecated")
# Ignore a spurious warning from bitsandbytes.
warnings.filterwarnings('ignore', message="MatMul8bitLt: inputs will be cast from")
print(f'Loading model "{repo_id}" (bnb = "{bnb}")...')
# Ignore a spurious warning "Special tokens have been added..."
transformers.logging.set_verbosity_error()
tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
transformers.logging.set_verbosity_warning()
bnb_config = None
if bnb == 'nf8':
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
if bnb == 'nf4':
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(
repo_id,
torch_dtype=torch_dtype,
device_map=device_map,
quantization_config=bnb_config,
)
# Disable gradients to save memory.
for param in model.parameters():
param.requires_grad = False
# Try our best to get deterministic results.
model.eval()
print('Done loading model.')
return model, tokenizer
def load_tokenizer(repo_id):
# Ignore a spurious warning "Special tokens have been added..."
transformers.logging.set_verbosity_error()
tokenizer = AutoTokenizer.from_pretrained(repo_id, use_fast=True)
transformers.logging.set_verbosity_warning()
return tokenizer