copy Kaggle notebook to app.py
Browse files- app.py +18 -4
- mercedes.jpg +0 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,7 +1,21 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from fastai.vision.all import *
|
3 |
|
4 |
+
__all__ = ['is_cat', 'learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf']
|
|
|
5 |
|
6 |
+
def is_cat(x): return x[0].isupper()
|
7 |
+
|
8 |
+
learn = load_learner('model.pkl')
|
9 |
+
|
10 |
+
categories = ('forest', 'ocean', 'mercedes', 'bmw')
|
11 |
+
|
12 |
+
def classify_image(img):
|
13 |
+
pred,idx,probs = learn.predict(img)
|
14 |
+
return dict(zip(categories, map(float,probs)))
|
15 |
+
|
16 |
+
image = gr.Image(shape=(192, 192))
|
17 |
+
label = gr.Label()
|
18 |
+
examples = ['mercedes.jpg']
|
19 |
+
|
20 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
|
21 |
+
intf.launch(inline=False)
|
mercedes.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
fastai
|