Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,9 +10,7 @@ from audioldm.audio.stft import TacotronSTFT
|
|
| 10 |
from audioldm.variational_autoencoder import AutoencoderKL
|
| 11 |
from pydub import AudioSegment
|
| 12 |
from gradio import Markdown
|
| 13 |
-
|
| 14 |
import torch
|
| 15 |
-
#from diffusers.models.autoencoder_kl import AutoencoderKL
|
| 16 |
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
| 17 |
from diffusers import DiffusionPipeline,AudioPipelineOutput
|
| 18 |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
|
|
@@ -20,13 +18,7 @@ from typing import Union
|
|
| 20 |
from diffusers.utils.torch_utils import randn_tensor
|
| 21 |
from tqdm import tqdm
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
class Tango2Pipeline(DiffusionPipeline):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
def __init__(
|
| 31 |
self,
|
| 32 |
vae: AutoencoderKL,
|
|
@@ -44,7 +36,6 @@ class Tango2Pipeline(DiffusionPipeline):
|
|
| 44 |
unet=unet,
|
| 45 |
scheduler=scheduler
|
| 46 |
)
|
| 47 |
-
|
| 48 |
|
| 49 |
def _encode_prompt(self, prompt):
|
| 50 |
device = self.text_encoder.device
|
|
@@ -266,11 +257,10 @@ def gradio_generate(prompt, output_format, steps, guidance):
|
|
| 266 |
return output_filename
|
| 267 |
|
| 268 |
|
| 269 |
-
# Gradio input and output components
|
| 270 |
input_text = gr.Textbox(lines=2, label="Prompt")
|
| 271 |
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
| 272 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
| 273 |
-
denoising_steps = gr.Slider(minimum=100, maximum=200, value=
|
| 274 |
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
|
| 275 |
|
| 276 |
css = """
|
|
@@ -279,8 +269,6 @@ footer {
|
|
| 279 |
}
|
| 280 |
"""
|
| 281 |
|
| 282 |
-
|
| 283 |
-
# Gradio interface
|
| 284 |
gr_interface = gr.Interface(
|
| 285 |
fn=gradio_generate,
|
| 286 |
inputs=[input_text, output_format, denoising_steps, guidance_scale],
|
|
@@ -317,5 +305,4 @@ gr_interface = gr.Interface(
|
|
| 317 |
cache_examples="lazy", # Turn on to cache.
|
| 318 |
)
|
| 319 |
|
| 320 |
-
# Launch Gradio app
|
| 321 |
gr_interface.queue(10).launch()
|
|
|
|
| 10 |
from audioldm.variational_autoencoder import AutoencoderKL
|
| 11 |
from pydub import AudioSegment
|
| 12 |
from gradio import Markdown
|
|
|
|
| 13 |
import torch
|
|
|
|
| 14 |
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
| 15 |
from diffusers import DiffusionPipeline,AudioPipelineOutput
|
| 16 |
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
|
|
|
|
| 18 |
from diffusers.utils.torch_utils import randn_tensor
|
| 19 |
from tqdm import tqdm
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
class Tango2Pipeline(DiffusionPipeline):
|
|
|
|
|
|
|
| 22 |
def __init__(
|
| 23 |
self,
|
| 24 |
vae: AutoencoderKL,
|
|
|
|
| 36 |
unet=unet,
|
| 37 |
scheduler=scheduler
|
| 38 |
)
|
|
|
|
| 39 |
|
| 40 |
def _encode_prompt(self, prompt):
|
| 41 |
device = self.text_encoder.device
|
|
|
|
| 257 |
return output_filename
|
| 258 |
|
| 259 |
|
|
|
|
| 260 |
input_text = gr.Textbox(lines=2, label="Prompt")
|
| 261 |
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
| 262 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
| 263 |
+
denoising_steps = gr.Slider(minimum=100, maximum=200, value=200, step=1, label="Steps", interactive=True)
|
| 264 |
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
|
| 265 |
|
| 266 |
css = """
|
|
|
|
| 269 |
}
|
| 270 |
"""
|
| 271 |
|
|
|
|
|
|
|
| 272 |
gr_interface = gr.Interface(
|
| 273 |
fn=gradio_generate,
|
| 274 |
inputs=[input_text, output_format, denoising_steps, guidance_scale],
|
|
|
|
| 305 |
cache_examples="lazy", # Turn on to cache.
|
| 306 |
)
|
| 307 |
|
|
|
|
| 308 |
gr_interface.queue(10).launch()
|