Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
·
93defe7
1
Parent(s):
11750f0
chore: 提取 models.py 中的类
Browse files- modules/models/ChatGLM.py +84 -0
- modules/models/{Google_PaLM.py → GooglePaLM.py} +6 -3
- modules/models/LLaMA.py +116 -0
- modules/models/OpenAI.py +270 -0
- modules/models/XMChat.py +149 -0
- modules/models/models.py +23 -593
modules/models/ChatGLM.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import platform
|
| 6 |
+
|
| 7 |
+
import colorama
|
| 8 |
+
|
| 9 |
+
from ..index_func import *
|
| 10 |
+
from ..presets import *
|
| 11 |
+
from ..utils import *
|
| 12 |
+
from .base_model import BaseLLMModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ChatGLM_Client(BaseLLMModel):
|
| 16 |
+
def __init__(self, model_name, user_name="") -> None:
|
| 17 |
+
super().__init__(model_name=model_name, user=user_name)
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import AutoModel, AutoTokenizer
|
| 20 |
+
global CHATGLM_TOKENIZER, CHATGLM_MODEL
|
| 21 |
+
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
|
| 22 |
+
system_name = platform.system()
|
| 23 |
+
model_path = None
|
| 24 |
+
if os.path.exists("models"):
|
| 25 |
+
model_dirs = os.listdir("models")
|
| 26 |
+
if model_name in model_dirs:
|
| 27 |
+
model_path = f"models/{model_name}"
|
| 28 |
+
if model_path is not None:
|
| 29 |
+
model_source = model_path
|
| 30 |
+
else:
|
| 31 |
+
model_source = f"THUDM/{model_name}"
|
| 32 |
+
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
|
| 33 |
+
model_source, trust_remote_code=True
|
| 34 |
+
)
|
| 35 |
+
quantified = False
|
| 36 |
+
if "int4" in model_name:
|
| 37 |
+
quantified = True
|
| 38 |
+
model = AutoModel.from_pretrained(
|
| 39 |
+
model_source, trust_remote_code=True
|
| 40 |
+
)
|
| 41 |
+
if torch.cuda.is_available():
|
| 42 |
+
# run on CUDA
|
| 43 |
+
logging.info("CUDA is available, using CUDA")
|
| 44 |
+
model = model.half().cuda()
|
| 45 |
+
# mps加速还存在一些问题,暂时不使用
|
| 46 |
+
elif system_name == "Darwin" and model_path is not None and not quantified:
|
| 47 |
+
logging.info("Running on macOS, using MPS")
|
| 48 |
+
# running on macOS and model already downloaded
|
| 49 |
+
model = model.half().to("mps")
|
| 50 |
+
else:
|
| 51 |
+
logging.info("GPU is not available, using CPU")
|
| 52 |
+
model = model.float()
|
| 53 |
+
model = model.eval()
|
| 54 |
+
CHATGLM_MODEL = model
|
| 55 |
+
|
| 56 |
+
def _get_glm_style_input(self):
|
| 57 |
+
history = [x["content"] for x in self.history]
|
| 58 |
+
query = history.pop()
|
| 59 |
+
logging.debug(colorama.Fore.YELLOW +
|
| 60 |
+
f"{history}" + colorama.Fore.RESET)
|
| 61 |
+
assert (
|
| 62 |
+
len(history) % 2 == 0
|
| 63 |
+
), f"History should be even length. current history is: {history}"
|
| 64 |
+
history = [[history[i], history[i + 1]]
|
| 65 |
+
for i in range(0, len(history), 2)]
|
| 66 |
+
return history, query
|
| 67 |
+
|
| 68 |
+
def get_answer_at_once(self):
|
| 69 |
+
history, query = self._get_glm_style_input()
|
| 70 |
+
response, _ = CHATGLM_MODEL.chat(
|
| 71 |
+
CHATGLM_TOKENIZER, query, history=history)
|
| 72 |
+
return response, len(response)
|
| 73 |
+
|
| 74 |
+
def get_answer_stream_iter(self):
|
| 75 |
+
history, query = self._get_glm_style_input()
|
| 76 |
+
for response, history in CHATGLM_MODEL.stream_chat(
|
| 77 |
+
CHATGLM_TOKENIZER,
|
| 78 |
+
query,
|
| 79 |
+
history,
|
| 80 |
+
max_length=self.token_upper_limit,
|
| 81 |
+
top_p=self.top_p,
|
| 82 |
+
temperature=self.temperature,
|
| 83 |
+
):
|
| 84 |
+
yield response
|
modules/models/{Google_PaLM.py → GooglePaLM.py}
RENAMED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from .base_model import BaseLLMModel
|
| 2 |
import google.generativeai as palm
|
| 3 |
|
|
|
|
| 4 |
class Google_PaLM_Client(BaseLLMModel):
|
| 5 |
def __init__(self, model_name, api_key, user_name="") -> None:
|
| 6 |
super().__init__(model_name=model_name, user=user_name)
|
|
@@ -18,9 +19,11 @@ class Google_PaLM_Client(BaseLLMModel):
|
|
| 18 |
def get_answer_at_once(self):
|
| 19 |
palm.configure(api_key=self.api_key)
|
| 20 |
messages = self._get_palm_style_input()
|
| 21 |
-
response = palm.chat(context=self.system_prompt, messages=messages,
|
|
|
|
| 22 |
if response.last is not None:
|
| 23 |
return response.last, len(response.last)
|
| 24 |
else:
|
| 25 |
-
reasons = '\n\n'.join(
|
| 26 |
-
|
|
|
|
|
|
| 1 |
from .base_model import BaseLLMModel
|
| 2 |
import google.generativeai as palm
|
| 3 |
|
| 4 |
+
|
| 5 |
class Google_PaLM_Client(BaseLLMModel):
|
| 6 |
def __init__(self, model_name, api_key, user_name="") -> None:
|
| 7 |
super().__init__(model_name=model_name, user=user_name)
|
|
|
|
| 19 |
def get_answer_at_once(self):
|
| 20 |
palm.configure(api_key=self.api_key)
|
| 21 |
messages = self._get_palm_style_input()
|
| 22 |
+
response = palm.chat(context=self.system_prompt, messages=messages,
|
| 23 |
+
temperature=self.temperature, top_p=self.top_p)
|
| 24 |
if response.last is not None:
|
| 25 |
return response.last, len(response.last)
|
| 26 |
else:
|
| 27 |
+
reasons = '\n\n'.join(
|
| 28 |
+
reason['reason'].name for reason in response.filters)
|
| 29 |
+
return "由于下面的原因,Google 拒绝返回 PaLM 的回答:\n\n" + reasons, 0
|
modules/models/LLaMA.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from ..index_func import *
|
| 7 |
+
from ..presets import *
|
| 8 |
+
from ..utils import *
|
| 9 |
+
from .base_model import BaseLLMModel
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LLaMA_Client(BaseLLMModel):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
model_name,
|
| 16 |
+
lora_path=None,
|
| 17 |
+
user_name=""
|
| 18 |
+
) -> None:
|
| 19 |
+
super().__init__(model_name=model_name, user=user_name)
|
| 20 |
+
from lmflow.args import (DatasetArguments, InferencerArguments,
|
| 21 |
+
ModelArguments)
|
| 22 |
+
from lmflow.datasets.dataset import Dataset
|
| 23 |
+
from lmflow.models.auto_model import AutoModel
|
| 24 |
+
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
| 25 |
+
|
| 26 |
+
self.max_generation_token = 1000
|
| 27 |
+
self.end_string = "\n\n"
|
| 28 |
+
# We don't need input data
|
| 29 |
+
data_args = DatasetArguments(dataset_path=None)
|
| 30 |
+
self.dataset = Dataset(data_args)
|
| 31 |
+
self.system_prompt = ""
|
| 32 |
+
|
| 33 |
+
global LLAMA_MODEL, LLAMA_INFERENCER
|
| 34 |
+
if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
|
| 35 |
+
model_path = None
|
| 36 |
+
if os.path.exists("models"):
|
| 37 |
+
model_dirs = os.listdir("models")
|
| 38 |
+
if model_name in model_dirs:
|
| 39 |
+
model_path = f"models/{model_name}"
|
| 40 |
+
if model_path is not None:
|
| 41 |
+
model_source = model_path
|
| 42 |
+
else:
|
| 43 |
+
model_source = f"decapoda-research/{model_name}"
|
| 44 |
+
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
| 45 |
+
if lora_path is not None:
|
| 46 |
+
lora_path = f"lora/{lora_path}"
|
| 47 |
+
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None,
|
| 48 |
+
use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
| 49 |
+
pipeline_args = InferencerArguments(
|
| 50 |
+
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
| 51 |
+
|
| 52 |
+
with open(pipeline_args.deepspeed, "r", encoding="utf-8") as f:
|
| 53 |
+
ds_config = json.load(f)
|
| 54 |
+
LLAMA_MODEL = AutoModel.get_model(
|
| 55 |
+
model_args,
|
| 56 |
+
tune_strategy="none",
|
| 57 |
+
ds_config=ds_config,
|
| 58 |
+
)
|
| 59 |
+
LLAMA_INFERENCER = AutoPipeline.get_pipeline(
|
| 60 |
+
pipeline_name="inferencer",
|
| 61 |
+
model_args=model_args,
|
| 62 |
+
data_args=data_args,
|
| 63 |
+
pipeline_args=pipeline_args,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
def _get_llama_style_input(self):
|
| 67 |
+
history = []
|
| 68 |
+
instruction = ""
|
| 69 |
+
if self.system_prompt:
|
| 70 |
+
instruction = (f"Instruction: {self.system_prompt}\n")
|
| 71 |
+
for x in self.history:
|
| 72 |
+
if x["role"] == "user":
|
| 73 |
+
history.append(f"{instruction}Input: {x['content']}")
|
| 74 |
+
else:
|
| 75 |
+
history.append(f"Output: {x['content']}")
|
| 76 |
+
context = "\n\n".join(history)
|
| 77 |
+
context += "\n\nOutput: "
|
| 78 |
+
return context
|
| 79 |
+
|
| 80 |
+
def get_answer_at_once(self):
|
| 81 |
+
context = self._get_llama_style_input()
|
| 82 |
+
|
| 83 |
+
input_dataset = self.dataset.from_dict(
|
| 84 |
+
{"type": "text_only", "instances": [{"text": context}]}
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
| 88 |
+
model=LLAMA_MODEL,
|
| 89 |
+
dataset=input_dataset,
|
| 90 |
+
max_new_tokens=self.max_generation_token,
|
| 91 |
+
temperature=self.temperature,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
response = output_dataset.to_dict()["instances"][0]["text"]
|
| 95 |
+
return response, len(response)
|
| 96 |
+
|
| 97 |
+
def get_answer_stream_iter(self):
|
| 98 |
+
context = self._get_llama_style_input()
|
| 99 |
+
partial_text = ""
|
| 100 |
+
step = 1
|
| 101 |
+
for _ in range(0, self.max_generation_token, step):
|
| 102 |
+
input_dataset = self.dataset.from_dict(
|
| 103 |
+
{"type": "text_only", "instances": [
|
| 104 |
+
{"text": context + partial_text}]}
|
| 105 |
+
)
|
| 106 |
+
output_dataset = LLAMA_INFERENCER.inference(
|
| 107 |
+
model=LLAMA_MODEL,
|
| 108 |
+
dataset=input_dataset,
|
| 109 |
+
max_new_tokens=step,
|
| 110 |
+
temperature=self.temperature,
|
| 111 |
+
)
|
| 112 |
+
response = output_dataset.to_dict()["instances"][0]["text"]
|
| 113 |
+
if response == "" or response == self.end_string:
|
| 114 |
+
break
|
| 115 |
+
partial_text += response
|
| 116 |
+
yield partial_text
|
modules/models/OpenAI.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
import colorama
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
from .. import shared
|
| 10 |
+
from ..config import retrieve_proxy, sensitive_id, usage_limit
|
| 11 |
+
from ..index_func import *
|
| 12 |
+
from ..presets import *
|
| 13 |
+
from ..utils import *
|
| 14 |
+
from .base_model import BaseLLMModel
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class OpenAIClient(BaseLLMModel):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
model_name,
|
| 21 |
+
api_key,
|
| 22 |
+
system_prompt=INITIAL_SYSTEM_PROMPT,
|
| 23 |
+
temperature=1.0,
|
| 24 |
+
top_p=1.0,
|
| 25 |
+
user_name=""
|
| 26 |
+
) -> None:
|
| 27 |
+
super().__init__(
|
| 28 |
+
model_name=model_name,
|
| 29 |
+
temperature=temperature,
|
| 30 |
+
top_p=top_p,
|
| 31 |
+
system_prompt=system_prompt,
|
| 32 |
+
user=user_name
|
| 33 |
+
)
|
| 34 |
+
self.api_key = api_key
|
| 35 |
+
self.need_api_key = True
|
| 36 |
+
self._refresh_header()
|
| 37 |
+
|
| 38 |
+
def get_answer_stream_iter(self):
|
| 39 |
+
response = self._get_response(stream=True)
|
| 40 |
+
if response is not None:
|
| 41 |
+
iter = self._decode_chat_response(response)
|
| 42 |
+
partial_text = ""
|
| 43 |
+
for i in iter:
|
| 44 |
+
partial_text += i
|
| 45 |
+
yield partial_text
|
| 46 |
+
else:
|
| 47 |
+
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
|
| 48 |
+
|
| 49 |
+
def get_answer_at_once(self):
|
| 50 |
+
response = self._get_response()
|
| 51 |
+
response = json.loads(response.text)
|
| 52 |
+
content = response["choices"][0]["message"]["content"]
|
| 53 |
+
total_token_count = response["usage"]["total_tokens"]
|
| 54 |
+
return content, total_token_count
|
| 55 |
+
|
| 56 |
+
def count_token(self, user_input):
|
| 57 |
+
input_token_count = count_token(construct_user(user_input))
|
| 58 |
+
if self.system_prompt is not None and len(self.all_token_counts) == 0:
|
| 59 |
+
system_prompt_token_count = count_token(
|
| 60 |
+
construct_system(self.system_prompt)
|
| 61 |
+
)
|
| 62 |
+
return input_token_count + system_prompt_token_count
|
| 63 |
+
return input_token_count
|
| 64 |
+
|
| 65 |
+
def billing_info(self):
|
| 66 |
+
try:
|
| 67 |
+
curr_time = datetime.datetime.now()
|
| 68 |
+
last_day_of_month = get_last_day_of_month(
|
| 69 |
+
curr_time).strftime("%Y-%m-%d")
|
| 70 |
+
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
|
| 71 |
+
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
|
| 72 |
+
try:
|
| 73 |
+
usage_data = self._get_billing_data(usage_url)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
# logging.error(f"获取API使用情况失败: " + str(e))
|
| 76 |
+
if "Invalid authorization header" in str(e):
|
| 77 |
+
return i18n("**获取API使用情况失败**,需在填写`config.json`中正确填写sensitive_id")
|
| 78 |
+
elif "Incorrect API key provided: sess" in str(e):
|
| 79 |
+
return i18n("**获取API使用情况失败**,sensitive_id错误或已过期")
|
| 80 |
+
return i18n("**获取API使用情况失败**")
|
| 81 |
+
# rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
|
| 82 |
+
rounded_usage = round(usage_data["total_usage"] / 100, 5)
|
| 83 |
+
usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
|
| 84 |
+
from ..webui import get_html
|
| 85 |
+
|
| 86 |
+
# return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
|
| 87 |
+
return get_html("billing_info.html").format(
|
| 88 |
+
label=i18n("本月使用金额"),
|
| 89 |
+
usage_percent=usage_percent,
|
| 90 |
+
rounded_usage=rounded_usage,
|
| 91 |
+
usage_limit=usage_limit
|
| 92 |
+
)
|
| 93 |
+
except requests.exceptions.ConnectTimeout:
|
| 94 |
+
status_text = (
|
| 95 |
+
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
|
| 96 |
+
)
|
| 97 |
+
return status_text
|
| 98 |
+
except requests.exceptions.ReadTimeout:
|
| 99 |
+
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
|
| 100 |
+
return status_text
|
| 101 |
+
except Exception as e:
|
| 102 |
+
import traceback
|
| 103 |
+
traceback.print_exc()
|
| 104 |
+
logging.error(i18n("获取API使用情况失败:") + str(e))
|
| 105 |
+
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
|
| 106 |
+
|
| 107 |
+
def set_token_upper_limit(self, new_upper_limit):
|
| 108 |
+
pass
|
| 109 |
+
|
| 110 |
+
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
|
| 111 |
+
def _get_response(self, stream=False):
|
| 112 |
+
openai_api_key = self.api_key
|
| 113 |
+
system_prompt = self.system_prompt
|
| 114 |
+
history = self.history
|
| 115 |
+
logging.debug(colorama.Fore.YELLOW +
|
| 116 |
+
f"{history}" + colorama.Fore.RESET)
|
| 117 |
+
headers = {
|
| 118 |
+
"Content-Type": "application/json",
|
| 119 |
+
"Authorization": f"Bearer {openai_api_key}",
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
if system_prompt is not None:
|
| 123 |
+
history = [construct_system(system_prompt), *history]
|
| 124 |
+
|
| 125 |
+
payload = {
|
| 126 |
+
"model": self.model_name,
|
| 127 |
+
"messages": history,
|
| 128 |
+
"temperature": self.temperature,
|
| 129 |
+
"top_p": self.top_p,
|
| 130 |
+
"n": self.n_choices,
|
| 131 |
+
"stream": stream,
|
| 132 |
+
"presence_penalty": self.presence_penalty,
|
| 133 |
+
"frequency_penalty": self.frequency_penalty,
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
if self.max_generation_token is not None:
|
| 137 |
+
payload["max_tokens"] = self.max_generation_token
|
| 138 |
+
if self.stop_sequence is not None:
|
| 139 |
+
payload["stop"] = self.stop_sequence
|
| 140 |
+
if self.logit_bias is not None:
|
| 141 |
+
payload["logit_bias"] = self.logit_bias
|
| 142 |
+
if self.user_identifier:
|
| 143 |
+
payload["user"] = self.user_identifier
|
| 144 |
+
|
| 145 |
+
if stream:
|
| 146 |
+
timeout = TIMEOUT_STREAMING
|
| 147 |
+
else:
|
| 148 |
+
timeout = TIMEOUT_ALL
|
| 149 |
+
|
| 150 |
+
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
| 151 |
+
if shared.state.completion_url != COMPLETION_URL:
|
| 152 |
+
logging.debug(f"使用自定义API URL: {shared.state.completion_url}")
|
| 153 |
+
|
| 154 |
+
with retrieve_proxy():
|
| 155 |
+
try:
|
| 156 |
+
response = requests.post(
|
| 157 |
+
shared.state.completion_url,
|
| 158 |
+
headers=headers,
|
| 159 |
+
json=payload,
|
| 160 |
+
stream=stream,
|
| 161 |
+
timeout=timeout,
|
| 162 |
+
)
|
| 163 |
+
except:
|
| 164 |
+
return None
|
| 165 |
+
return response
|
| 166 |
+
|
| 167 |
+
def _refresh_header(self):
|
| 168 |
+
self.headers = {
|
| 169 |
+
"Content-Type": "application/json",
|
| 170 |
+
"Authorization": f"Bearer {sensitive_id}",
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
def _get_billing_data(self, billing_url):
|
| 174 |
+
with retrieve_proxy():
|
| 175 |
+
response = requests.get(
|
| 176 |
+
billing_url,
|
| 177 |
+
headers=self.headers,
|
| 178 |
+
timeout=TIMEOUT_ALL,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if response.status_code == 200:
|
| 182 |
+
data = response.json()
|
| 183 |
+
return data
|
| 184 |
+
else:
|
| 185 |
+
raise Exception(
|
| 186 |
+
f"API request failed with status code {response.status_code}: {response.text}"
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
def _decode_chat_response(self, response):
|
| 190 |
+
error_msg = ""
|
| 191 |
+
for chunk in response.iter_lines():
|
| 192 |
+
if chunk:
|
| 193 |
+
chunk = chunk.decode()
|
| 194 |
+
chunk_length = len(chunk)
|
| 195 |
+
try:
|
| 196 |
+
chunk = json.loads(chunk[6:])
|
| 197 |
+
except:
|
| 198 |
+
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
|
| 199 |
+
error_msg += chunk
|
| 200 |
+
continue
|
| 201 |
+
if chunk_length > 6 and "delta" in chunk["choices"][0]:
|
| 202 |
+
if chunk["choices"][0]["finish_reason"] == "stop":
|
| 203 |
+
break
|
| 204 |
+
try:
|
| 205 |
+
yield chunk["choices"][0]["delta"]["content"]
|
| 206 |
+
except Exception as e:
|
| 207 |
+
# logging.error(f"Error: {e}")
|
| 208 |
+
continue
|
| 209 |
+
if error_msg:
|
| 210 |
+
raise Exception(error_msg)
|
| 211 |
+
|
| 212 |
+
def set_key(self, new_access_key):
|
| 213 |
+
ret = super().set_key(new_access_key)
|
| 214 |
+
self._refresh_header()
|
| 215 |
+
return ret
|
| 216 |
+
|
| 217 |
+
def _single_query_at_once(self, history, temperature=1.0):
|
| 218 |
+
timeout = TIMEOUT_ALL
|
| 219 |
+
headers = {
|
| 220 |
+
"Content-Type": "application/json",
|
| 221 |
+
"Authorization": f"Bearer {self.api_key}",
|
| 222 |
+
"temperature": f"{temperature}",
|
| 223 |
+
}
|
| 224 |
+
payload = {
|
| 225 |
+
"model": self.model_name,
|
| 226 |
+
"messages": history,
|
| 227 |
+
}
|
| 228 |
+
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
| 229 |
+
if shared.state.completion_url != COMPLETION_URL:
|
| 230 |
+
logging.debug(f"使用自定义API URL: {shared.state.completion_url}")
|
| 231 |
+
|
| 232 |
+
with retrieve_proxy():
|
| 233 |
+
response = requests.post(
|
| 234 |
+
shared.state.completion_url,
|
| 235 |
+
headers=headers,
|
| 236 |
+
json=payload,
|
| 237 |
+
stream=False,
|
| 238 |
+
timeout=timeout,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
return response
|
| 242 |
+
|
| 243 |
+
def auto_name_chat_history(self, name_chat_method, user_question, chatbot, user_name, single_turn_checkbox):
|
| 244 |
+
if len(self.history) == 2 and not single_turn_checkbox:
|
| 245 |
+
user_question = self.history[0]["content"]
|
| 246 |
+
if name_chat_method == i18n("模型自动总结(消耗tokens)"):
|
| 247 |
+
ai_answer = self.history[1]["content"]
|
| 248 |
+
try:
|
| 249 |
+
history = [
|
| 250 |
+
{"role": "system", "content": SUMMARY_CHAT_SYSTEM_PROMPT},
|
| 251 |
+
{"role": "user", "content": f"Please write a title based on the following conversation:\n---\nUser: {user_question}\nAssistant: {ai_answer}"}
|
| 252 |
+
]
|
| 253 |
+
response = self._single_query_at_once(
|
| 254 |
+
history, temperature=0.0)
|
| 255 |
+
response = json.loads(response.text)
|
| 256 |
+
content = response["choices"][0]["message"]["content"]
|
| 257 |
+
filename = replace_special_symbols(content) + ".json"
|
| 258 |
+
except Exception as e:
|
| 259 |
+
logging.info(f"自动命名失败。{e}")
|
| 260 |
+
filename = replace_special_symbols(user_question)[
|
| 261 |
+
:16] + ".json"
|
| 262 |
+
return self.rename_chat_history(filename, chatbot, user_name)
|
| 263 |
+
elif name_chat_method == i18n("第一条提问"):
|
| 264 |
+
filename = replace_special_symbols(user_question)[
|
| 265 |
+
:16] + ".json"
|
| 266 |
+
return self.rename_chat_history(filename, chatbot, user_name)
|
| 267 |
+
else:
|
| 268 |
+
return gr.update()
|
| 269 |
+
else:
|
| 270 |
+
return gr.update()
|
modules/models/XMChat.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import base64
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
import uuid
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
|
| 10 |
+
import requests
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
from ..index_func import *
|
| 14 |
+
from ..presets import *
|
| 15 |
+
from ..utils import *
|
| 16 |
+
from .base_model import BaseLLMModel
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class XMChatClient(BaseLLMModel):
|
| 20 |
+
def __init__(self, api_key, user_name=""):
|
| 21 |
+
super().__init__(model_name="xmchat", user=user_name)
|
| 22 |
+
self.api_key = api_key
|
| 23 |
+
self.session_id = None
|
| 24 |
+
self.reset()
|
| 25 |
+
self.image_bytes = None
|
| 26 |
+
self.image_path = None
|
| 27 |
+
self.xm_history = []
|
| 28 |
+
self.url = "https://xmbot.net/web"
|
| 29 |
+
self.last_conv_id = None
|
| 30 |
+
|
| 31 |
+
def reset(self):
|
| 32 |
+
self.session_id = str(uuid.uuid4())
|
| 33 |
+
self.last_conv_id = None
|
| 34 |
+
return [], "已重置"
|
| 35 |
+
|
| 36 |
+
def image_to_base64(self, image_path):
|
| 37 |
+
# 打开并加载图片
|
| 38 |
+
img = Image.open(image_path)
|
| 39 |
+
|
| 40 |
+
# 获取图片的宽度和高度
|
| 41 |
+
width, height = img.size
|
| 42 |
+
|
| 43 |
+
# 计算压缩比例,以确保最长边小于4096像素
|
| 44 |
+
max_dimension = 2048
|
| 45 |
+
scale_ratio = min(max_dimension / width, max_dimension / height)
|
| 46 |
+
|
| 47 |
+
if scale_ratio < 1:
|
| 48 |
+
# 按压缩比例调整图片大小
|
| 49 |
+
new_width = int(width * scale_ratio)
|
| 50 |
+
new_height = int(height * scale_ratio)
|
| 51 |
+
img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 52 |
+
|
| 53 |
+
# 将图片转换为jpg格式的二进制数据
|
| 54 |
+
buffer = BytesIO()
|
| 55 |
+
if img.mode == "RGBA":
|
| 56 |
+
img = img.convert("RGB")
|
| 57 |
+
img.save(buffer, format='JPEG')
|
| 58 |
+
binary_image = buffer.getvalue()
|
| 59 |
+
|
| 60 |
+
# 对二进制数据进行Base64编码
|
| 61 |
+
base64_image = base64.b64encode(binary_image).decode('utf-8')
|
| 62 |
+
|
| 63 |
+
return base64_image
|
| 64 |
+
|
| 65 |
+
def try_read_image(self, filepath):
|
| 66 |
+
def is_image_file(filepath):
|
| 67 |
+
# 判断文件是否为图片
|
| 68 |
+
valid_image_extensions = [
|
| 69 |
+
".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
|
| 70 |
+
file_extension = os.path.splitext(filepath)[1].lower()
|
| 71 |
+
return file_extension in valid_image_extensions
|
| 72 |
+
|
| 73 |
+
if is_image_file(filepath):
|
| 74 |
+
logging.info(f"读取图片文件: {filepath}")
|
| 75 |
+
self.image_bytes = self.image_to_base64(filepath)
|
| 76 |
+
self.image_path = filepath
|
| 77 |
+
else:
|
| 78 |
+
self.image_bytes = None
|
| 79 |
+
self.image_path = None
|
| 80 |
+
|
| 81 |
+
def like(self):
|
| 82 |
+
if self.last_conv_id is None:
|
| 83 |
+
return "点赞失败,你还没发送过消息"
|
| 84 |
+
data = {
|
| 85 |
+
"uuid": self.last_conv_id,
|
| 86 |
+
"appraise": "good"
|
| 87 |
+
}
|
| 88 |
+
requests.post(self.url, json=data)
|
| 89 |
+
return "👍点赞成功,感谢反馈~"
|
| 90 |
+
|
| 91 |
+
def dislike(self):
|
| 92 |
+
if self.last_conv_id is None:
|
| 93 |
+
return "点踩失败,你还没发送过消息"
|
| 94 |
+
data = {
|
| 95 |
+
"uuid": self.last_conv_id,
|
| 96 |
+
"appraise": "bad"
|
| 97 |
+
}
|
| 98 |
+
requests.post(self.url, json=data)
|
| 99 |
+
return "👎点踩成功,感谢反馈~"
|
| 100 |
+
|
| 101 |
+
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
|
| 102 |
+
fake_inputs = real_inputs
|
| 103 |
+
display_append = ""
|
| 104 |
+
limited_context = False
|
| 105 |
+
return limited_context, fake_inputs, display_append, real_inputs, chatbot
|
| 106 |
+
|
| 107 |
+
def handle_file_upload(self, files, chatbot, language):
|
| 108 |
+
"""if the model accepts multi modal input, implement this function"""
|
| 109 |
+
if files:
|
| 110 |
+
for file in files:
|
| 111 |
+
if file.name:
|
| 112 |
+
logging.info(f"尝试读取图像: {file.name}")
|
| 113 |
+
self.try_read_image(file.name)
|
| 114 |
+
if self.image_path is not None:
|
| 115 |
+
chatbot = chatbot + [((self.image_path,), None)]
|
| 116 |
+
if self.image_bytes is not None:
|
| 117 |
+
logging.info("使用图片作为输入")
|
| 118 |
+
# XMChat的一轮对话中实际上只能处理一张图片
|
| 119 |
+
self.reset()
|
| 120 |
+
conv_id = str(uuid.uuid4())
|
| 121 |
+
data = {
|
| 122 |
+
"user_id": self.api_key,
|
| 123 |
+
"session_id": self.session_id,
|
| 124 |
+
"uuid": conv_id,
|
| 125 |
+
"data_type": "imgbase64",
|
| 126 |
+
"data": self.image_bytes
|
| 127 |
+
}
|
| 128 |
+
response = requests.post(self.url, json=data)
|
| 129 |
+
response = json.loads(response.text)
|
| 130 |
+
logging.info(f"图片回复: {response['data']}")
|
| 131 |
+
return None, chatbot, None
|
| 132 |
+
|
| 133 |
+
def get_answer_at_once(self):
|
| 134 |
+
question = self.history[-1]["content"]
|
| 135 |
+
conv_id = str(uuid.uuid4())
|
| 136 |
+
self.last_conv_id = conv_id
|
| 137 |
+
data = {
|
| 138 |
+
"user_id": self.api_key,
|
| 139 |
+
"session_id": self.session_id,
|
| 140 |
+
"uuid": conv_id,
|
| 141 |
+
"data_type": "text",
|
| 142 |
+
"data": question
|
| 143 |
+
}
|
| 144 |
+
response = requests.post(self.url, json=data)
|
| 145 |
+
try:
|
| 146 |
+
response = json.loads(response.text)
|
| 147 |
+
return response["data"], len(response["data"])
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return response.text, len(response.text)
|
modules/models/models.py
CHANGED
|
@@ -1,599 +1,19 @@
|
|
| 1 |
from __future__ import annotations
|
| 2 |
-
from typing import TYPE_CHECKING, List
|
| 3 |
|
| 4 |
import logging
|
| 5 |
-
import json
|
| 6 |
-
import commentjson as cjson
|
| 7 |
import os
|
| 8 |
-
import sys
|
| 9 |
-
import requests
|
| 10 |
-
import urllib3
|
| 11 |
-
import platform
|
| 12 |
-
import base64
|
| 13 |
-
from io import BytesIO
|
| 14 |
-
from PIL import Image
|
| 15 |
|
| 16 |
-
from tqdm import tqdm
|
| 17 |
import colorama
|
| 18 |
-
import
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
import uuid
|
| 22 |
|
| 23 |
-
from ..presets import *
|
| 24 |
from ..index_func import *
|
|
|
|
| 25 |
from ..utils import *
|
| 26 |
-
from .. import shared
|
| 27 |
-
from ..config import retrieve_proxy, usage_limit, sensitive_id
|
| 28 |
-
from modules import config
|
| 29 |
from .base_model import BaseLLMModel, ModelType
|
| 30 |
|
| 31 |
|
| 32 |
-
class OpenAIClient(BaseLLMModel):
|
| 33 |
-
def __init__(
|
| 34 |
-
self,
|
| 35 |
-
model_name,
|
| 36 |
-
api_key,
|
| 37 |
-
system_prompt=INITIAL_SYSTEM_PROMPT,
|
| 38 |
-
temperature=1.0,
|
| 39 |
-
top_p=1.0,
|
| 40 |
-
user_name=""
|
| 41 |
-
) -> None:
|
| 42 |
-
super().__init__(
|
| 43 |
-
model_name=model_name,
|
| 44 |
-
temperature=temperature,
|
| 45 |
-
top_p=top_p,
|
| 46 |
-
system_prompt=system_prompt,
|
| 47 |
-
user=user_name
|
| 48 |
-
)
|
| 49 |
-
self.api_key = api_key
|
| 50 |
-
self.need_api_key = True
|
| 51 |
-
self._refresh_header()
|
| 52 |
-
|
| 53 |
-
def get_answer_stream_iter(self):
|
| 54 |
-
response = self._get_response(stream=True)
|
| 55 |
-
if response is not None:
|
| 56 |
-
iter = self._decode_chat_response(response)
|
| 57 |
-
partial_text = ""
|
| 58 |
-
for i in iter:
|
| 59 |
-
partial_text += i
|
| 60 |
-
yield partial_text
|
| 61 |
-
else:
|
| 62 |
-
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
|
| 63 |
-
|
| 64 |
-
def get_answer_at_once(self):
|
| 65 |
-
response = self._get_response()
|
| 66 |
-
response = json.loads(response.text)
|
| 67 |
-
content = response["choices"][0]["message"]["content"]
|
| 68 |
-
total_token_count = response["usage"]["total_tokens"]
|
| 69 |
-
return content, total_token_count
|
| 70 |
-
|
| 71 |
-
def count_token(self, user_input):
|
| 72 |
-
input_token_count = count_token(construct_user(user_input))
|
| 73 |
-
if self.system_prompt is not None and len(self.all_token_counts) == 0:
|
| 74 |
-
system_prompt_token_count = count_token(
|
| 75 |
-
construct_system(self.system_prompt)
|
| 76 |
-
)
|
| 77 |
-
return input_token_count + system_prompt_token_count
|
| 78 |
-
return input_token_count
|
| 79 |
-
|
| 80 |
-
def billing_info(self):
|
| 81 |
-
try:
|
| 82 |
-
curr_time = datetime.datetime.now()
|
| 83 |
-
last_day_of_month = get_last_day_of_month(
|
| 84 |
-
curr_time).strftime("%Y-%m-%d")
|
| 85 |
-
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
|
| 86 |
-
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
|
| 87 |
-
try:
|
| 88 |
-
usage_data = self._get_billing_data(usage_url)
|
| 89 |
-
except Exception as e:
|
| 90 |
-
# logging.error(f"获取API使用情况失败: " + str(e))
|
| 91 |
-
if "Invalid authorization header" in str(e):
|
| 92 |
-
return i18n("**获取API使用情况失败**,需在填写`config.json`中正确填写sensitive_id")
|
| 93 |
-
elif "Incorrect API key provided: sess" in str(e):
|
| 94 |
-
return i18n("**获取API使用情况失败**,sensitive_id错误或已过期")
|
| 95 |
-
return i18n("**获取API使用情况失败**")
|
| 96 |
-
# rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
|
| 97 |
-
rounded_usage = round(usage_data["total_usage"] / 100, 5)
|
| 98 |
-
usage_percent = round(usage_data["total_usage"] / usage_limit, 2)
|
| 99 |
-
from ..webui import get_html
|
| 100 |
-
# return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
|
| 101 |
-
return get_html("billing_info.html").format(
|
| 102 |
-
label = i18n("本月使用金额"),
|
| 103 |
-
usage_percent = usage_percent,
|
| 104 |
-
rounded_usage = rounded_usage,
|
| 105 |
-
usage_limit = usage_limit
|
| 106 |
-
)
|
| 107 |
-
except requests.exceptions.ConnectTimeout:
|
| 108 |
-
status_text = (
|
| 109 |
-
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
|
| 110 |
-
)
|
| 111 |
-
return status_text
|
| 112 |
-
except requests.exceptions.ReadTimeout:
|
| 113 |
-
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
|
| 114 |
-
return status_text
|
| 115 |
-
except Exception as e:
|
| 116 |
-
import traceback
|
| 117 |
-
traceback.print_exc()
|
| 118 |
-
logging.error(i18n("获取API使用情况失败:") + str(e))
|
| 119 |
-
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
|
| 120 |
-
|
| 121 |
-
def set_token_upper_limit(self, new_upper_limit):
|
| 122 |
-
pass
|
| 123 |
-
|
| 124 |
-
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
|
| 125 |
-
def _get_response(self, stream=False):
|
| 126 |
-
openai_api_key = self.api_key
|
| 127 |
-
system_prompt = self.system_prompt
|
| 128 |
-
history = self.history
|
| 129 |
-
logging.debug(colorama.Fore.YELLOW +
|
| 130 |
-
f"{history}" + colorama.Fore.RESET)
|
| 131 |
-
headers = {
|
| 132 |
-
"Content-Type": "application/json",
|
| 133 |
-
"Authorization": f"Bearer {openai_api_key}",
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
if system_prompt is not None:
|
| 137 |
-
history = [construct_system(system_prompt), *history]
|
| 138 |
-
|
| 139 |
-
payload = {
|
| 140 |
-
"model": self.model_name,
|
| 141 |
-
"messages": history,
|
| 142 |
-
"temperature": self.temperature,
|
| 143 |
-
"top_p": self.top_p,
|
| 144 |
-
"n": self.n_choices,
|
| 145 |
-
"stream": stream,
|
| 146 |
-
"presence_penalty": self.presence_penalty,
|
| 147 |
-
"frequency_penalty": self.frequency_penalty,
|
| 148 |
-
}
|
| 149 |
-
|
| 150 |
-
if self.max_generation_token is not None:
|
| 151 |
-
payload["max_tokens"] = self.max_generation_token
|
| 152 |
-
if self.stop_sequence is not None:
|
| 153 |
-
payload["stop"] = self.stop_sequence
|
| 154 |
-
if self.logit_bias is not None:
|
| 155 |
-
payload["logit_bias"] = self.logit_bias
|
| 156 |
-
if self.user_identifier:
|
| 157 |
-
payload["user"] = self.user_identifier
|
| 158 |
-
|
| 159 |
-
if stream:
|
| 160 |
-
timeout = TIMEOUT_STREAMING
|
| 161 |
-
else:
|
| 162 |
-
timeout = TIMEOUT_ALL
|
| 163 |
-
|
| 164 |
-
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
| 165 |
-
if shared.state.completion_url != COMPLETION_URL:
|
| 166 |
-
logging.debug(f"使用自定义API URL: {shared.state.completion_url}")
|
| 167 |
-
|
| 168 |
-
with retrieve_proxy():
|
| 169 |
-
try:
|
| 170 |
-
response = requests.post(
|
| 171 |
-
shared.state.completion_url,
|
| 172 |
-
headers=headers,
|
| 173 |
-
json=payload,
|
| 174 |
-
stream=stream,
|
| 175 |
-
timeout=timeout,
|
| 176 |
-
)
|
| 177 |
-
except:
|
| 178 |
-
return None
|
| 179 |
-
return response
|
| 180 |
-
|
| 181 |
-
def _refresh_header(self):
|
| 182 |
-
self.headers = {
|
| 183 |
-
"Content-Type": "application/json",
|
| 184 |
-
"Authorization": f"Bearer {sensitive_id}",
|
| 185 |
-
}
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
def _get_billing_data(self, billing_url):
|
| 189 |
-
with retrieve_proxy():
|
| 190 |
-
response = requests.get(
|
| 191 |
-
billing_url,
|
| 192 |
-
headers=self.headers,
|
| 193 |
-
timeout=TIMEOUT_ALL,
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
if response.status_code == 200:
|
| 197 |
-
data = response.json()
|
| 198 |
-
return data
|
| 199 |
-
else:
|
| 200 |
-
raise Exception(
|
| 201 |
-
f"API request failed with status code {response.status_code}: {response.text}"
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
def _decode_chat_response(self, response):
|
| 205 |
-
error_msg = ""
|
| 206 |
-
for chunk in response.iter_lines():
|
| 207 |
-
if chunk:
|
| 208 |
-
chunk = chunk.decode()
|
| 209 |
-
chunk_length = len(chunk)
|
| 210 |
-
try:
|
| 211 |
-
chunk = json.loads(chunk[6:])
|
| 212 |
-
except:
|
| 213 |
-
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
|
| 214 |
-
error_msg += chunk
|
| 215 |
-
continue
|
| 216 |
-
if chunk_length > 6 and "delta" in chunk["choices"][0]:
|
| 217 |
-
if chunk["choices"][0]["finish_reason"] == "stop":
|
| 218 |
-
break
|
| 219 |
-
try:
|
| 220 |
-
yield chunk["choices"][0]["delta"]["content"]
|
| 221 |
-
except Exception as e:
|
| 222 |
-
# logging.error(f"Error: {e}")
|
| 223 |
-
continue
|
| 224 |
-
if error_msg:
|
| 225 |
-
raise Exception(error_msg)
|
| 226 |
-
|
| 227 |
-
def set_key(self, new_access_key):
|
| 228 |
-
ret = super().set_key(new_access_key)
|
| 229 |
-
self._refresh_header()
|
| 230 |
-
return ret
|
| 231 |
-
|
| 232 |
-
def _single_query_at_once(self, history, temperature=1.0):
|
| 233 |
-
timeout = TIMEOUT_ALL
|
| 234 |
-
headers = {
|
| 235 |
-
"Content-Type": "application/json",
|
| 236 |
-
"Authorization": f"Bearer {self.api_key}",
|
| 237 |
-
"temperature": f"{temperature}",
|
| 238 |
-
}
|
| 239 |
-
payload = {
|
| 240 |
-
"model": self.model_name,
|
| 241 |
-
"messages": history,
|
| 242 |
-
}
|
| 243 |
-
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
|
| 244 |
-
if shared.state.completion_url != COMPLETION_URL:
|
| 245 |
-
logging.debug(f"使用自定义API URL: {shared.state.completion_url}")
|
| 246 |
-
|
| 247 |
-
with retrieve_proxy():
|
| 248 |
-
response = requests.post(
|
| 249 |
-
shared.state.completion_url,
|
| 250 |
-
headers=headers,
|
| 251 |
-
json=payload,
|
| 252 |
-
stream=False,
|
| 253 |
-
timeout=timeout,
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
return response
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
def auto_name_chat_history(self, name_chat_method, user_question, chatbot, user_name, single_turn_checkbox):
|
| 260 |
-
if len(self.history) == 2 and not single_turn_checkbox:
|
| 261 |
-
user_question = self.history[0]["content"]
|
| 262 |
-
if name_chat_method == i18n("模型自动总结(消耗tokens)"):
|
| 263 |
-
ai_answer = self.history[1]["content"]
|
| 264 |
-
try:
|
| 265 |
-
history = [
|
| 266 |
-
{ "role": "system", "content": SUMMARY_CHAT_SYSTEM_PROMPT},
|
| 267 |
-
{ "role": "user", "content": f"Please write a title based on the following conversation:\n---\nUser: {user_question}\nAssistant: {ai_answer}"}
|
| 268 |
-
]
|
| 269 |
-
response = self._single_query_at_once(history, temperature=0.0)
|
| 270 |
-
response = json.loads(response.text)
|
| 271 |
-
content = response["choices"][0]["message"]["content"]
|
| 272 |
-
filename = replace_special_symbols(content) + ".json"
|
| 273 |
-
except Exception as e:
|
| 274 |
-
logging.info(f"自动命名失败。{e}")
|
| 275 |
-
filename = replace_special_symbols(user_question)[:16] + ".json"
|
| 276 |
-
return self.rename_chat_history(filename, chatbot, user_name)
|
| 277 |
-
elif name_chat_method == i18n("第一条提问"):
|
| 278 |
-
filename = replace_special_symbols(user_question)[:16] + ".json"
|
| 279 |
-
return self.rename_chat_history(filename, chatbot, user_name)
|
| 280 |
-
else:
|
| 281 |
-
return gr.update()
|
| 282 |
-
else:
|
| 283 |
-
return gr.update()
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
class ChatGLM_Client(BaseLLMModel):
|
| 287 |
-
def __init__(self, model_name, user_name="") -> None:
|
| 288 |
-
super().__init__(model_name=model_name, user=user_name)
|
| 289 |
-
from transformers import AutoTokenizer, AutoModel
|
| 290 |
-
import torch
|
| 291 |
-
global CHATGLM_TOKENIZER, CHATGLM_MODEL
|
| 292 |
-
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
|
| 293 |
-
system_name = platform.system()
|
| 294 |
-
model_path = None
|
| 295 |
-
if os.path.exists("models"):
|
| 296 |
-
model_dirs = os.listdir("models")
|
| 297 |
-
if model_name in model_dirs:
|
| 298 |
-
model_path = f"models/{model_name}"
|
| 299 |
-
if model_path is not None:
|
| 300 |
-
model_source = model_path
|
| 301 |
-
else:
|
| 302 |
-
model_source = f"THUDM/{model_name}"
|
| 303 |
-
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
|
| 304 |
-
model_source, trust_remote_code=True
|
| 305 |
-
)
|
| 306 |
-
quantified = False
|
| 307 |
-
if "int4" in model_name:
|
| 308 |
-
quantified = True
|
| 309 |
-
model = AutoModel.from_pretrained(
|
| 310 |
-
model_source, trust_remote_code=True
|
| 311 |
-
)
|
| 312 |
-
if torch.cuda.is_available():
|
| 313 |
-
# run on CUDA
|
| 314 |
-
logging.info("CUDA is available, using CUDA")
|
| 315 |
-
model = model.half().cuda()
|
| 316 |
-
# mps加速还存在一些问题,暂时不使用
|
| 317 |
-
elif system_name == "Darwin" and model_path is not None and not quantified:
|
| 318 |
-
logging.info("Running on macOS, using MPS")
|
| 319 |
-
# running on macOS and model already downloaded
|
| 320 |
-
model = model.half().to("mps")
|
| 321 |
-
else:
|
| 322 |
-
logging.info("GPU is not available, using CPU")
|
| 323 |
-
model = model.float()
|
| 324 |
-
model = model.eval()
|
| 325 |
-
CHATGLM_MODEL = model
|
| 326 |
-
|
| 327 |
-
def _get_glm_style_input(self):
|
| 328 |
-
history = [x["content"] for x in self.history]
|
| 329 |
-
query = history.pop()
|
| 330 |
-
logging.debug(colorama.Fore.YELLOW +
|
| 331 |
-
f"{history}" + colorama.Fore.RESET)
|
| 332 |
-
assert (
|
| 333 |
-
len(history) % 2 == 0
|
| 334 |
-
), f"History should be even length. current history is: {history}"
|
| 335 |
-
history = [[history[i], history[i + 1]]
|
| 336 |
-
for i in range(0, len(history), 2)]
|
| 337 |
-
return history, query
|
| 338 |
-
|
| 339 |
-
def get_answer_at_once(self):
|
| 340 |
-
history, query = self._get_glm_style_input()
|
| 341 |
-
response, _ = CHATGLM_MODEL.chat(
|
| 342 |
-
CHATGLM_TOKENIZER, query, history=history)
|
| 343 |
-
return response, len(response)
|
| 344 |
-
|
| 345 |
-
def get_answer_stream_iter(self):
|
| 346 |
-
history, query = self._get_glm_style_input()
|
| 347 |
-
for response, history in CHATGLM_MODEL.stream_chat(
|
| 348 |
-
CHATGLM_TOKENIZER,
|
| 349 |
-
query,
|
| 350 |
-
history,
|
| 351 |
-
max_length=self.token_upper_limit,
|
| 352 |
-
top_p=self.top_p,
|
| 353 |
-
temperature=self.temperature,
|
| 354 |
-
):
|
| 355 |
-
yield response
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
class LLaMA_Client(BaseLLMModel):
|
| 359 |
-
def __init__(
|
| 360 |
-
self,
|
| 361 |
-
model_name,
|
| 362 |
-
lora_path=None,
|
| 363 |
-
user_name=""
|
| 364 |
-
) -> None:
|
| 365 |
-
super().__init__(model_name=model_name, user=user_name)
|
| 366 |
-
from lmflow.datasets.dataset import Dataset
|
| 367 |
-
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
| 368 |
-
from lmflow.models.auto_model import AutoModel
|
| 369 |
-
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
| 370 |
-
|
| 371 |
-
self.max_generation_token = 1000
|
| 372 |
-
self.end_string = "\n\n"
|
| 373 |
-
# We don't need input data
|
| 374 |
-
data_args = DatasetArguments(dataset_path=None)
|
| 375 |
-
self.dataset = Dataset(data_args)
|
| 376 |
-
self.system_prompt = ""
|
| 377 |
-
|
| 378 |
-
global LLAMA_MODEL, LLAMA_INFERENCER
|
| 379 |
-
if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
|
| 380 |
-
model_path = None
|
| 381 |
-
if os.path.exists("models"):
|
| 382 |
-
model_dirs = os.listdir("models")
|
| 383 |
-
if model_name in model_dirs:
|
| 384 |
-
model_path = f"models/{model_name}"
|
| 385 |
-
if model_path is not None:
|
| 386 |
-
model_source = model_path
|
| 387 |
-
else:
|
| 388 |
-
model_source = f"decapoda-research/{model_name}"
|
| 389 |
-
# raise Exception(f"models目录下没有这个模型: {model_name}")
|
| 390 |
-
if lora_path is not None:
|
| 391 |
-
lora_path = f"lora/{lora_path}"
|
| 392 |
-
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None,
|
| 393 |
-
use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
| 394 |
-
pipeline_args = InferencerArguments(
|
| 395 |
-
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
| 396 |
-
|
| 397 |
-
with open(pipeline_args.deepspeed, "r", encoding="utf-8") as f:
|
| 398 |
-
ds_config = json.load(f)
|
| 399 |
-
LLAMA_MODEL = AutoModel.get_model(
|
| 400 |
-
model_args,
|
| 401 |
-
tune_strategy="none",
|
| 402 |
-
ds_config=ds_config,
|
| 403 |
-
)
|
| 404 |
-
LLAMA_INFERENCER = AutoPipeline.get_pipeline(
|
| 405 |
-
pipeline_name="inferencer",
|
| 406 |
-
model_args=model_args,
|
| 407 |
-
data_args=data_args,
|
| 408 |
-
pipeline_args=pipeline_args,
|
| 409 |
-
)
|
| 410 |
-
|
| 411 |
-
def _get_llama_style_input(self):
|
| 412 |
-
history = []
|
| 413 |
-
instruction = ""
|
| 414 |
-
if self.system_prompt:
|
| 415 |
-
instruction = (f"Instruction: {self.system_prompt}\n")
|
| 416 |
-
for x in self.history:
|
| 417 |
-
if x["role"] == "user":
|
| 418 |
-
history.append(f"{instruction}Input: {x['content']}")
|
| 419 |
-
else:
|
| 420 |
-
history.append(f"Output: {x['content']}")
|
| 421 |
-
context = "\n\n".join(history)
|
| 422 |
-
context += "\n\nOutput: "
|
| 423 |
-
return context
|
| 424 |
-
|
| 425 |
-
def get_answer_at_once(self):
|
| 426 |
-
context = self._get_llama_style_input()
|
| 427 |
-
|
| 428 |
-
input_dataset = self.dataset.from_dict(
|
| 429 |
-
{"type": "text_only", "instances": [{"text": context}]}
|
| 430 |
-
)
|
| 431 |
-
|
| 432 |
-
output_dataset = LLAMA_INFERENCER.inference(
|
| 433 |
-
model=LLAMA_MODEL,
|
| 434 |
-
dataset=input_dataset,
|
| 435 |
-
max_new_tokens=self.max_generation_token,
|
| 436 |
-
temperature=self.temperature,
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
response = output_dataset.to_dict()["instances"][0]["text"]
|
| 440 |
-
return response, len(response)
|
| 441 |
-
|
| 442 |
-
def get_answer_stream_iter(self):
|
| 443 |
-
context = self._get_llama_style_input()
|
| 444 |
-
partial_text = ""
|
| 445 |
-
step = 1
|
| 446 |
-
for _ in range(0, self.max_generation_token, step):
|
| 447 |
-
input_dataset = self.dataset.from_dict(
|
| 448 |
-
{"type": "text_only", "instances": [
|
| 449 |
-
{"text": context + partial_text}]}
|
| 450 |
-
)
|
| 451 |
-
output_dataset = LLAMA_INFERENCER.inference(
|
| 452 |
-
model=LLAMA_MODEL,
|
| 453 |
-
dataset=input_dataset,
|
| 454 |
-
max_new_tokens=step,
|
| 455 |
-
temperature=self.temperature,
|
| 456 |
-
)
|
| 457 |
-
response = output_dataset.to_dict()["instances"][0]["text"]
|
| 458 |
-
if response == "" or response == self.end_string:
|
| 459 |
-
break
|
| 460 |
-
partial_text += response
|
| 461 |
-
yield partial_text
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
class XMChat(BaseLLMModel):
|
| 465 |
-
def __init__(self, api_key, user_name=""):
|
| 466 |
-
super().__init__(model_name="xmchat", user=user_name)
|
| 467 |
-
self.api_key = api_key
|
| 468 |
-
self.session_id = None
|
| 469 |
-
self.reset()
|
| 470 |
-
self.image_bytes = None
|
| 471 |
-
self.image_path = None
|
| 472 |
-
self.xm_history = []
|
| 473 |
-
self.url = "https://xmbot.net/web"
|
| 474 |
-
self.last_conv_id = None
|
| 475 |
-
|
| 476 |
-
def reset(self):
|
| 477 |
-
self.session_id = str(uuid.uuid4())
|
| 478 |
-
self.last_conv_id = None
|
| 479 |
-
return [], "已重置"
|
| 480 |
-
|
| 481 |
-
def image_to_base64(self, image_path):
|
| 482 |
-
# 打开并加载图片
|
| 483 |
-
img = Image.open(image_path)
|
| 484 |
-
|
| 485 |
-
# 获取图片的宽度和高度
|
| 486 |
-
width, height = img.size
|
| 487 |
-
|
| 488 |
-
# 计算压缩比例,以确保最长边小于4096像素
|
| 489 |
-
max_dimension = 2048
|
| 490 |
-
scale_ratio = min(max_dimension / width, max_dimension / height)
|
| 491 |
-
|
| 492 |
-
if scale_ratio < 1:
|
| 493 |
-
# 按压缩比例调整图片大小
|
| 494 |
-
new_width = int(width * scale_ratio)
|
| 495 |
-
new_height = int(height * scale_ratio)
|
| 496 |
-
img = img.resize((new_width, new_height), Image.ANTIALIAS)
|
| 497 |
-
|
| 498 |
-
# 将图片转换为jpg格式的二进制数据
|
| 499 |
-
buffer = BytesIO()
|
| 500 |
-
if img.mode == "RGBA":
|
| 501 |
-
img = img.convert("RGB")
|
| 502 |
-
img.save(buffer, format='JPEG')
|
| 503 |
-
binary_image = buffer.getvalue()
|
| 504 |
-
|
| 505 |
-
# 对二进制数据进行Base64编码
|
| 506 |
-
base64_image = base64.b64encode(binary_image).decode('utf-8')
|
| 507 |
-
|
| 508 |
-
return base64_image
|
| 509 |
-
|
| 510 |
-
def try_read_image(self, filepath):
|
| 511 |
-
def is_image_file(filepath):
|
| 512 |
-
# 判断文件是否为图片
|
| 513 |
-
valid_image_extensions = [
|
| 514 |
-
".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
|
| 515 |
-
file_extension = os.path.splitext(filepath)[1].lower()
|
| 516 |
-
return file_extension in valid_image_extensions
|
| 517 |
-
|
| 518 |
-
if is_image_file(filepath):
|
| 519 |
-
logging.info(f"读取图片文件: {filepath}")
|
| 520 |
-
self.image_bytes = self.image_to_base64(filepath)
|
| 521 |
-
self.image_path = filepath
|
| 522 |
-
else:
|
| 523 |
-
self.image_bytes = None
|
| 524 |
-
self.image_path = None
|
| 525 |
-
|
| 526 |
-
def like(self):
|
| 527 |
-
if self.last_conv_id is None:
|
| 528 |
-
return "点赞失败,你还没发送过消息"
|
| 529 |
-
data = {
|
| 530 |
-
"uuid": self.last_conv_id,
|
| 531 |
-
"appraise": "good"
|
| 532 |
-
}
|
| 533 |
-
requests.post(self.url, json=data)
|
| 534 |
-
return "👍点赞成功,感谢反馈~"
|
| 535 |
-
|
| 536 |
-
def dislike(self):
|
| 537 |
-
if self.last_conv_id is None:
|
| 538 |
-
return "点踩失败,你还没发送过消息"
|
| 539 |
-
data = {
|
| 540 |
-
"uuid": self.last_conv_id,
|
| 541 |
-
"appraise": "bad"
|
| 542 |
-
}
|
| 543 |
-
requests.post(self.url, json=data)
|
| 544 |
-
return "👎点踩成功,感谢反馈~"
|
| 545 |
-
|
| 546 |
-
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
|
| 547 |
-
fake_inputs = real_inputs
|
| 548 |
-
display_append = ""
|
| 549 |
-
limited_context = False
|
| 550 |
-
return limited_context, fake_inputs, display_append, real_inputs, chatbot
|
| 551 |
-
|
| 552 |
-
def handle_file_upload(self, files, chatbot, language):
|
| 553 |
-
"""if the model accepts multi modal input, implement this function"""
|
| 554 |
-
if files:
|
| 555 |
-
for file in files:
|
| 556 |
-
if file.name:
|
| 557 |
-
logging.info(f"尝试读取图像: {file.name}")
|
| 558 |
-
self.try_read_image(file.name)
|
| 559 |
-
if self.image_path is not None:
|
| 560 |
-
chatbot = chatbot + [((self.image_path,), None)]
|
| 561 |
-
if self.image_bytes is not None:
|
| 562 |
-
logging.info("使用图片作为输入")
|
| 563 |
-
# XMChat的一轮对话中实际上只能处理一张图片
|
| 564 |
-
self.reset()
|
| 565 |
-
conv_id = str(uuid.uuid4())
|
| 566 |
-
data = {
|
| 567 |
-
"user_id": self.api_key,
|
| 568 |
-
"session_id": self.session_id,
|
| 569 |
-
"uuid": conv_id,
|
| 570 |
-
"data_type": "imgbase64",
|
| 571 |
-
"data": self.image_bytes
|
| 572 |
-
}
|
| 573 |
-
response = requests.post(self.url, json=data)
|
| 574 |
-
response = json.loads(response.text)
|
| 575 |
-
logging.info(f"图片回复: {response['data']}")
|
| 576 |
-
return None, chatbot, None
|
| 577 |
-
|
| 578 |
-
def get_answer_at_once(self):
|
| 579 |
-
question = self.history[-1]["content"]
|
| 580 |
-
conv_id = str(uuid.uuid4())
|
| 581 |
-
self.last_conv_id = conv_id
|
| 582 |
-
data = {
|
| 583 |
-
"user_id": self.api_key,
|
| 584 |
-
"session_id": self.session_id,
|
| 585 |
-
"uuid": conv_id,
|
| 586 |
-
"data_type": "text",
|
| 587 |
-
"data": question
|
| 588 |
-
}
|
| 589 |
-
response = requests.post(self.url, json=data)
|
| 590 |
-
try:
|
| 591 |
-
response = json.loads(response.text)
|
| 592 |
-
return response["data"], len(response["data"])
|
| 593 |
-
except Exception as e:
|
| 594 |
-
return response.text, len(response.text)
|
| 595 |
-
|
| 596 |
-
|
| 597 |
def get_model(
|
| 598 |
model_name,
|
| 599 |
lora_model_path=None,
|
|
@@ -616,6 +36,7 @@ def get_model(
|
|
| 616 |
try:
|
| 617 |
if model_type == ModelType.OpenAI:
|
| 618 |
logging.info(f"正在加载OpenAI模型: {model_name}")
|
|
|
|
| 619 |
access_key = os.environ.get("OPENAI_API_KEY", access_key)
|
| 620 |
model = OpenAIClient(
|
| 621 |
model_name=model_name,
|
|
@@ -627,6 +48,7 @@ def get_model(
|
|
| 627 |
)
|
| 628 |
elif model_type == ModelType.ChatGLM:
|
| 629 |
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
|
|
|
| 630 |
model = ChatGLM_Client(model_name, user_name=user_name)
|
| 631 |
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
| 632 |
msg = f"现在请为 {model_name} 选择LoRA模型"
|
|
@@ -637,6 +59,7 @@ def get_model(
|
|
| 637 |
lora_choices = ["No LoRA"] + lora_choices
|
| 638 |
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
| 639 |
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
|
|
|
| 640 |
dont_change_lora_selector = True
|
| 641 |
if lora_model_path == "No LoRA":
|
| 642 |
lora_model_path = None
|
|
@@ -646,9 +69,10 @@ def get_model(
|
|
| 646 |
model = LLaMA_Client(
|
| 647 |
model_name, lora_model_path, user_name=user_name)
|
| 648 |
elif model_type == ModelType.XMChat:
|
|
|
|
| 649 |
if os.environ.get("XMCHAT_API_KEY") != "":
|
| 650 |
access_key = os.environ.get("XMCHAT_API_KEY")
|
| 651 |
-
model =
|
| 652 |
elif model_type == ModelType.StableLM:
|
| 653 |
from .StableLM import StableLM_Client
|
| 654 |
model = StableLM_Client(model_name, user_name=user_name)
|
|
@@ -657,29 +81,35 @@ def get_model(
|
|
| 657 |
model = MOSS_Client(model_name, user_name=user_name)
|
| 658 |
elif model_type == ModelType.YuanAI:
|
| 659 |
from .inspurai import Yuan_Client
|
| 660 |
-
model = Yuan_Client(model_name, api_key=access_key,
|
|
|
|
| 661 |
elif model_type == ModelType.Minimax:
|
| 662 |
from .minimax import MiniMax_Client
|
| 663 |
if os.environ.get("MINIMAX_API_KEY") != "":
|
| 664 |
access_key = os.environ.get("MINIMAX_API_KEY")
|
| 665 |
-
model = MiniMax_Client(
|
|
|
|
| 666 |
elif model_type == ModelType.ChuanhuAgent:
|
| 667 |
from .ChuanhuAgent import ChuanhuAgent_Client
|
| 668 |
-
model = ChuanhuAgent_Client(
|
|
|
|
| 669 |
elif model_type == ModelType.GooglePaLM:
|
| 670 |
-
from .
|
| 671 |
access_key = os.environ.get("GOOGLE_PALM_API_KEY", access_key)
|
| 672 |
-
model = Google_PaLM_Client(
|
|
|
|
| 673 |
elif model_type == ModelType.LangchainChat:
|
| 674 |
-
from .
|
| 675 |
model = Azure_OpenAI_Client(model_name, user_name=user_name)
|
| 676 |
elif model_type == ModelType.Midjourney:
|
| 677 |
from .midjourney import Midjourney_Client
|
| 678 |
mj_proxy_api_secret = os.getenv("MIDJOURNEY_PROXY_API_SECRET")
|
| 679 |
-
model = Midjourney_Client(
|
|
|
|
| 680 |
elif model_type == ModelType.Spark:
|
| 681 |
from .spark import Spark_Client
|
| 682 |
-
model = Spark_Client(model_name, os.getenv("SPARK_APPID"), os.getenv(
|
|
|
|
| 683 |
elif model_type == ModelType.Unknown:
|
| 684 |
raise ValueError(f"未知模型: {model_name}")
|
| 685 |
logging.info(msg)
|
|
|
|
| 1 |
from __future__ import annotations
|
|
|
|
| 2 |
|
| 3 |
import logging
|
|
|
|
|
|
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
import colorama
|
| 7 |
+
import commentjson as cjson
|
| 8 |
+
|
| 9 |
+
from modules import config
|
|
|
|
| 10 |
|
|
|
|
| 11 |
from ..index_func import *
|
| 12 |
+
from ..presets import *
|
| 13 |
from ..utils import *
|
|
|
|
|
|
|
|
|
|
| 14 |
from .base_model import BaseLLMModel, ModelType
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def get_model(
|
| 18 |
model_name,
|
| 19 |
lora_model_path=None,
|
|
|
|
| 36 |
try:
|
| 37 |
if model_type == ModelType.OpenAI:
|
| 38 |
logging.info(f"正在加载OpenAI模型: {model_name}")
|
| 39 |
+
from .OpenAI import OpenAIClient
|
| 40 |
access_key = os.environ.get("OPENAI_API_KEY", access_key)
|
| 41 |
model = OpenAIClient(
|
| 42 |
model_name=model_name,
|
|
|
|
| 48 |
)
|
| 49 |
elif model_type == ModelType.ChatGLM:
|
| 50 |
logging.info(f"正在加载ChatGLM模型: {model_name}")
|
| 51 |
+
from .ChatGLM import ChatGLM_Client
|
| 52 |
model = ChatGLM_Client(model_name, user_name=user_name)
|
| 53 |
elif model_type == ModelType.LLaMA and lora_model_path == "":
|
| 54 |
msg = f"现在请为 {model_name} 选择LoRA模型"
|
|
|
|
| 59 |
lora_choices = ["No LoRA"] + lora_choices
|
| 60 |
elif model_type == ModelType.LLaMA and lora_model_path != "":
|
| 61 |
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
|
| 62 |
+
from .LLaMA import LLaMA_Client
|
| 63 |
dont_change_lora_selector = True
|
| 64 |
if lora_model_path == "No LoRA":
|
| 65 |
lora_model_path = None
|
|
|
|
| 69 |
model = LLaMA_Client(
|
| 70 |
model_name, lora_model_path, user_name=user_name)
|
| 71 |
elif model_type == ModelType.XMChat:
|
| 72 |
+
from .XMChat import XMChatClient
|
| 73 |
if os.environ.get("XMCHAT_API_KEY") != "":
|
| 74 |
access_key = os.environ.get("XMCHAT_API_KEY")
|
| 75 |
+
model = XMChatClient(api_key=access_key, user_name=user_name)
|
| 76 |
elif model_type == ModelType.StableLM:
|
| 77 |
from .StableLM import StableLM_Client
|
| 78 |
model = StableLM_Client(model_name, user_name=user_name)
|
|
|
|
| 81 |
model = MOSS_Client(model_name, user_name=user_name)
|
| 82 |
elif model_type == ModelType.YuanAI:
|
| 83 |
from .inspurai import Yuan_Client
|
| 84 |
+
model = Yuan_Client(model_name, api_key=access_key,
|
| 85 |
+
user_name=user_name, system_prompt=system_prompt)
|
| 86 |
elif model_type == ModelType.Minimax:
|
| 87 |
from .minimax import MiniMax_Client
|
| 88 |
if os.environ.get("MINIMAX_API_KEY") != "":
|
| 89 |
access_key = os.environ.get("MINIMAX_API_KEY")
|
| 90 |
+
model = MiniMax_Client(
|
| 91 |
+
model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt)
|
| 92 |
elif model_type == ModelType.ChuanhuAgent:
|
| 93 |
from .ChuanhuAgent import ChuanhuAgent_Client
|
| 94 |
+
model = ChuanhuAgent_Client(
|
| 95 |
+
model_name, access_key, user_name=user_name)
|
| 96 |
elif model_type == ModelType.GooglePaLM:
|
| 97 |
+
from .GooglePaLM import Google_PaLM_Client
|
| 98 |
access_key = os.environ.get("GOOGLE_PALM_API_KEY", access_key)
|
| 99 |
+
model = Google_PaLM_Client(
|
| 100 |
+
model_name, access_key, user_name=user_name)
|
| 101 |
elif model_type == ModelType.LangchainChat:
|
| 102 |
+
from .Azure import Azure_OpenAI_Client
|
| 103 |
model = Azure_OpenAI_Client(model_name, user_name=user_name)
|
| 104 |
elif model_type == ModelType.Midjourney:
|
| 105 |
from .midjourney import Midjourney_Client
|
| 106 |
mj_proxy_api_secret = os.getenv("MIDJOURNEY_PROXY_API_SECRET")
|
| 107 |
+
model = Midjourney_Client(
|
| 108 |
+
model_name, mj_proxy_api_secret, user_name=user_name)
|
| 109 |
elif model_type == ModelType.Spark:
|
| 110 |
from .spark import Spark_Client
|
| 111 |
+
model = Spark_Client(model_name, os.getenv("SPARK_APPID"), os.getenv(
|
| 112 |
+
"SPARK_API_KEY"), os.getenv("SPARK_API_SECRET"), user_name=user_name)
|
| 113 |
elif model_type == ModelType.Unknown:
|
| 114 |
raise ValueError(f"未知模型: {model_name}")
|
| 115 |
logging.info(msg)
|