|
|
|
|
|
from flask import Flask,request |
|
from dotenv import load_dotenv |
|
|
|
from langchain.agents import tool |
|
|
|
|
|
|
|
app = Flask(__name__) |
|
load_dotenv() |
|
|
|
|
|
@tool |
|
def FAQ(question: str): |
|
"""Answers the question 1+1""" |
|
return 23 |
|
|
|
tools=[FAQ] |
|
|
|
|
|
@app.route('/', methods=['GET','POST']) |
|
def index(): |
|
|
|
input = { |
|
"page_context":"home", |
|
"user_summary":"The user is a first year student on BA Architecture", |
|
"session_summary":"The user has introduced themselves as Mark Peace and asked how the bot is doing", |
|
"user_input":"Can you remind me of my own name?" |
|
} |
|
|
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain.agents import create_openai_functions_agent |
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain.agents import AgentExecutor |
|
|
|
|
|
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) |
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
("system", "You are a helpful AI bot. Your name is Bob. Please do not answer if you aren't sure of the answer"), |
|
("system", "Here is a summary of the conversation so far: {session_summary}"), |
|
("human", "{user_input}"), |
|
MessagesPlaceholder(variable_name="agent_scratchpad") |
|
]) |
|
|
|
agent = create_openai_functions_agent(llm, tools, prompt) |
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) |
|
|
|
response=agent_executor.invoke(input) |
|
|
|
return response |