import gradio as gr from transformers import TextIteratorStreamer from threading import Thread from transformers import StoppingCriteria, StoppingCriteriaList import torch import spaces import os model_name = "microsoft/Phi-3-medium-128k-instruct" from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', torch_dtype=torch.float16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [29, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU() def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() messages = "".join(["".join(["\n<|end|>\n<|user|>\n"+item[0], "\n<|end|>\n<|assistant|>\n"+item[1]]) for item in history_transformer_format]) #messages = "".join(["".join([""+item[0], ""+item[1]]) for item in history_transformer_format]) model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=8192, do_sample=True, top_p=0.8, top_k=40, temperature=0.9, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: if new_token != '<': partial_message += new_token yield partial_message demo = gr.ChatInterface(fn=predict, examples=["Write me a python snake game code", "Write me a ping pong game code"], title="Phi-3-medium-128k-instruct") demo.launch(share=True)