Spaces:
Runtime error
Runtime error
feat: add universal approach for multiple models
Browse files- .gitignore +1 -0
- app.py +14 -9
- demo_cli.py +4 -48
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
README.md
|
app.py
CHANGED
|
@@ -3,18 +3,23 @@ import os
|
|
| 3 |
import shlex
|
| 4 |
import random
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
os.system("ls")
|
| 8 |
|
| 9 |
|
| 10 |
def inference(text):
|
| 11 |
os.system("python demo_cli.py --no_sound --cpu --text " + shlex.quote(text.strip()))
|
| 12 |
-
image_number = random.randint(2, len(os.listdir("
|
| 13 |
-
return [f"
|
| 14 |
|
| 15 |
|
| 16 |
-
title = "Pat NES Punk's Voice"
|
| 17 |
-
description = "<center> Text-to-speech engine with Pat Contri's voice. </center>"
|
| 18 |
article = "<p style='text-align: center'>Based on <a href='https://matheo.uliege.be/handle/2268.2/6801' target='_blank'>Real-Time Voice Cloning</a> | <a href='https://github.com/CorentinJ/Real-Time-Voice-Cloning' target='_blank'>Github Repo</a></p>"
|
| 19 |
|
| 20 |
examples = [
|
|
@@ -25,7 +30,7 @@ examples = [
|
|
| 25 |
"My name is Samantha Morris. I'm the editor of an internet news magazine exploring news most media shy away from."
|
| 26 |
],
|
| 27 |
[
|
| 28 |
-
'I have a morning ritual that I need to share. I call it
|
| 29 |
],
|
| 30 |
[
|
| 31 |
'With my eyes closed I crouch there for a minute, visualizing either Arnold or the guy from the second movie (not the chick in the third one because that one sucked) and I start to hum the terminator theme.'
|
|
@@ -44,12 +49,12 @@ gr.Interface(
|
|
| 44 |
inference,
|
| 45 |
inputs=["text"],
|
| 46 |
outputs=[
|
| 47 |
-
gr.Image(show_label=False, shape=(20, 20), value="
|
| 48 |
gr.outputs.Audio(type="file", label="Speech"),
|
| 49 |
],
|
| 50 |
enable_queue=True,
|
| 51 |
-
title=
|
| 52 |
-
description=
|
| 53 |
article=article,
|
| 54 |
examples=examples
|
| 55 |
).launch()
|
|
|
|
| 3 |
import shlex
|
| 4 |
import random
|
| 5 |
|
| 6 |
+
|
| 7 |
+
LINK = os.environ.get('link')
|
| 8 |
+
ALIAS = os.environ.get('alias')
|
| 9 |
+
TITLE = os.environ.get('title')
|
| 10 |
+
DESCRIPTION = os.environ.get('description')
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
os.system(f"megadl {LINK}")
|
| 14 |
os.system("ls")
|
| 15 |
|
| 16 |
|
| 17 |
def inference(text):
|
| 18 |
os.system("python demo_cli.py --no_sound --cpu --text " + shlex.quote(text.strip()))
|
| 19 |
+
image_number = random.randint(2, len(os.listdir(f"images/{ALIAS}/")))
|
| 20 |
+
return [f"images/{ALIAS}/{image_number}.gif", "demo_output_1.wav"]
|
| 21 |
|
| 22 |
|
|
|
|
|
|
|
| 23 |
article = "<p style='text-align: center'>Based on <a href='https://matheo.uliege.be/handle/2268.2/6801' target='_blank'>Real-Time Voice Cloning</a> | <a href='https://github.com/CorentinJ/Real-Time-Voice-Cloning' target='_blank'>Github Repo</a></p>"
|
| 24 |
|
| 25 |
examples = [
|
|
|
|
| 30 |
"My name is Samantha Morris. I'm the editor of an internet news magazine exploring news most media shy away from."
|
| 31 |
],
|
| 32 |
[
|
| 33 |
+
'I have a morning ritual that I need to share. I call it - the terminator. First I crouch down in the shower in the classic naked terminator traveling through time pose.'
|
| 34 |
],
|
| 35 |
[
|
| 36 |
'With my eyes closed I crouch there for a minute, visualizing either Arnold or the guy from the second movie (not the chick in the third one because that one sucked) and I start to hum the terminator theme.'
|
|
|
|
| 49 |
inference,
|
| 50 |
inputs=["text"],
|
| 51 |
outputs=[
|
| 52 |
+
gr.Image(show_label=False, shape=(20, 20), value=f"images/{ALIAS}/1.gif"),
|
| 53 |
gr.outputs.Audio(type="file", label="Speech"),
|
| 54 |
],
|
| 55 |
enable_queue=True,
|
| 56 |
+
title=TITLE,
|
| 57 |
+
description=DESCRIPTION,
|
| 58 |
article=article,
|
| 59 |
examples=examples
|
| 60 |
).launch()
|
demo_cli.py
CHANGED
|
@@ -15,6 +15,8 @@ import os
|
|
| 15 |
from audioread.exceptions import NoBackendError
|
| 16 |
import pickle
|
| 17 |
|
|
|
|
|
|
|
| 18 |
if __name__ == '__main__':
|
| 19 |
## Info & args
|
| 20 |
parser = argparse.ArgumentParser(
|
|
@@ -78,51 +80,7 @@ if __name__ == '__main__':
|
|
| 78 |
encoder.load_model(args.enc_model_fpath)
|
| 79 |
synthesizer = Synthesizer(args.syn_model_fpath)
|
| 80 |
vocoder.load_model(args.voc_model_fpath)
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
## Run a test
|
| 84 |
-
# print("Testing your configuration with small inputs.")
|
| 85 |
-
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
|
| 86 |
-
# # sampling rate, which may differ.
|
| 87 |
-
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats
|
| 88 |
-
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
|
| 89 |
-
# # The sampling rate is the number of values (samples) recorded per second, it is set to
|
| 90 |
-
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
|
| 91 |
-
# # to an audio of 1 second.
|
| 92 |
-
# print(" Testing the encoder...")
|
| 93 |
-
# encoder.embed_utterance(np.zeros(encoder.sampling_rate))
|
| 94 |
-
|
| 95 |
-
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
|
| 96 |
-
# # returns, but here we're going to make one ourselves just for the sake of showing that it's
|
| 97 |
-
# # possible.
|
| 98 |
-
# embed = np.random.rand(speaker_embedding_size)
|
| 99 |
-
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own
|
| 100 |
-
# # embeddings it will be).
|
| 101 |
-
# embed /= np.linalg.norm(embed)
|
| 102 |
-
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to
|
| 103 |
-
# # illustrate that
|
| 104 |
-
# embeds = [embed, np.zeros(speaker_embedding_size)]
|
| 105 |
-
# texts = ["test 1", "test 2"]
|
| 106 |
-
# print(" Testing the synthesizer... (loading the model will output a lot of text)")
|
| 107 |
-
# mels = synthesizer.synthesize_spectrograms(texts, embeds)
|
| 108 |
-
|
| 109 |
-
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
|
| 110 |
-
# # can concatenate the mel spectrograms to a single one.
|
| 111 |
-
# mel = np.concatenate(mels, axis=1)
|
| 112 |
-
# # The vocoder can take a callback function to display the generation. More on that later. For
|
| 113 |
-
# # now we'll simply hide it like this:
|
| 114 |
-
# no_action = lambda *args: None
|
| 115 |
-
# print(" Testing the vocoder...")
|
| 116 |
-
# # For the sake of making this test short, we'll pass a short target length. The target length
|
| 117 |
-
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled
|
| 118 |
-
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
|
| 119 |
-
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
|
| 120 |
-
# # that has a detrimental effect on the quality of the audio. The default parameters are
|
| 121 |
-
# # recommended in general.
|
| 122 |
-
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
|
| 123 |
-
|
| 124 |
-
print("All test passed! You can now synthesize speech.\n\n")
|
| 125 |
-
|
| 126 |
|
| 127 |
## Interactive speech generation
|
| 128 |
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
|
|
@@ -142,9 +100,8 @@ if __name__ == '__main__':
|
|
| 142 |
# The following two methods are equivalent:
|
| 143 |
# - Directly load from the filepath:
|
| 144 |
|
| 145 |
-
with open('
|
| 146 |
preprocessed_wav = pickle.load(handle)
|
| 147 |
-
# - If the wav is already loaded:
|
| 148 |
|
| 149 |
print("Loaded file succesfully")
|
| 150 |
|
|
@@ -198,4 +155,3 @@ if __name__ == '__main__':
|
|
| 198 |
print(generated_wav.dtype)
|
| 199 |
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
|
| 200 |
print("\nSaved output as %s\n\n" % filename)
|
| 201 |
-
print(os.environ)
|
|
|
|
| 15 |
from audioread.exceptions import NoBackendError
|
| 16 |
import pickle
|
| 17 |
|
| 18 |
+
ALIAS = os.environ.get('alias', 'breen')
|
| 19 |
+
|
| 20 |
if __name__ == '__main__':
|
| 21 |
## Info & args
|
| 22 |
parser = argparse.ArgumentParser(
|
|
|
|
| 80 |
encoder.load_model(args.enc_model_fpath)
|
| 81 |
synthesizer = Synthesizer(args.syn_model_fpath)
|
| 82 |
vocoder.load_model(args.voc_model_fpath)
|
| 83 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
## Interactive speech generation
|
| 86 |
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
|
|
|
|
| 100 |
# The following two methods are equivalent:
|
| 101 |
# - Directly load from the filepath:
|
| 102 |
|
| 103 |
+
with open(f'pickles/{ALIAS}.pickle', 'rb') as handle:
|
| 104 |
preprocessed_wav = pickle.load(handle)
|
|
|
|
| 105 |
|
| 106 |
print("Loaded file succesfully")
|
| 107 |
|
|
|
|
| 155 |
print(generated_wav.dtype)
|
| 156 |
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
|
| 157 |
print("\nSaved output as %s\n\n" % filename)
|
|
|