Spaces:
Runtime error
Runtime error
initial commit
Browse files- app.py +61 -0
- image_data.csv +0 -0
- requirements.txt +5 -0
- tensors/embeddings.npy +3 -0
- tensors/features.npy +3 -0
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import requests
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import uform
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
model_multi = uform.get_model('unum-cloud/uform-vl-multilingual')
|
| 13 |
+
|
| 14 |
+
embeddings = np.load('multilingual-image-search/tensors/embeddings.npy')
|
| 15 |
+
embeddings = torch.tensor(embeddings)
|
| 16 |
+
|
| 17 |
+
#features = np.load('multilingual-image-search/tensors/features.npy')
|
| 18 |
+
#features = torch.tensor(features)
|
| 19 |
+
|
| 20 |
+
img_df = pd.read_csv('multilingual-image-search/image_data.csv')
|
| 21 |
+
|
| 22 |
+
def url2img(url):
|
| 23 |
+
data = requests.get(url, allow_redirects = True).content
|
| 24 |
+
#return Image.open(io.BytesIO(data))
|
| 25 |
+
return data
|
| 26 |
+
|
| 27 |
+
def find_topk(text):
|
| 28 |
+
|
| 29 |
+
top_k = 10
|
| 30 |
+
|
| 31 |
+
text_data = model_multi.preprocess_text(text)
|
| 32 |
+
text_features, text_embedding = model_multi.encode_text(text_data, return_features=True)
|
| 33 |
+
|
| 34 |
+
sims = F.cosine_similarity(text_embedding, embeddings)
|
| 35 |
+
|
| 36 |
+
vals, inds = sims.topk(top_k)
|
| 37 |
+
|
| 38 |
+
top_k_urls = img_df.iloc[inds]['url'].values[0]
|
| 39 |
+
|
| 40 |
+
return url2img(top_k_urls)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# def rerank(text_features, text_data):
|
| 45 |
+
|
| 46 |
+
# # craet joint embeddings & get scores
|
| 47 |
+
# joint_embedding = model_multi.encode_multimodal(
|
| 48 |
+
# image_features=image_features,
|
| 49 |
+
# text_features=text_features,
|
| 50 |
+
# attention_mask=text_data['attention_mask']
|
| 51 |
+
# )
|
| 52 |
+
# score = model_multi.get_matching_scores(joint_embedding)
|
| 53 |
+
|
| 54 |
+
# # argmax to get top N
|
| 55 |
+
|
| 56 |
+
# return
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
demo = gr.Interface(find_topk, inputs = 'text', outputs = 'image')
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
demo.launch()
|
image_data.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
torch
|
| 3 |
+
uform
|
| 4 |
+
scikit-learn
|
| 5 |
+
npy-append-array
|
tensors/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:654724f18089334fdf0690a8da1b530b293d0d1d4815138736485fe26bd9e18b
|
| 3 |
+
size 25585792
|
tensors/features.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:222f3ea4591231f42cf65337053e925ec22290287fd42515c5db94662e3ac776
|
| 3 |
+
size 15121127552
|