Spaces:
Running
Running
File size: 6,526 Bytes
97902b8 a220659 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 e64bc6a 97902b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "duckdb==1.3.2",
# "pyarrow==19.0.1",
# "plotly.express",
# "sqlglot==27.0.0",
# ]
# ///
import marimo
__generated_with = "0.14.10"
app = marimo.App(width="medium")
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Loading Parquet files with DuckDB
*By [Thomas Liang](https://github.com/thliang01)*
#
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
[Apache Parquet](https://parquet.apache.org/) is a popular columnar storage format, optimized for analytics. Its columnar nature allows query engines like DuckDB to read only the necessary columns, leading to significant performance gains, especially for wide tables.
DuckDB has excellent, built-in support for reading Parquet files, making it incredibly easy to query and analyze Parquet data directly without a separate loading step.
In this notebook, we'll explore how to load and analyze Airbnb's stock price data from a remote Parquet file:
<ul>
<li>Querying a remote Parquet file directly.</li>
<li>Using the `read_parquet` function for more control.</li>
<li>Creating a persistent table from a Parquet file.</li>
<li>Performing basic data analysis and visualization.</li>
</ul>
"""
)
return
@app.cell
def _():
AIRBNB_URL = 'https://huggingface.co/datasets/BatteRaquette58/airbnb-stock-price/resolve/main/data/airbnb-stock.parquet'
return (AIRBNB_URL,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Using `FROM` to query Parquet files""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
The simplest way to query a Parquet file is to use it directly in a `FROM` clause, just like you would with a table. DuckDB will automatically detect that it's a Parquet file and read it accordingly.
Let's query a dataset of Airbnb's stock price from Hugging Face.
"""
)
return
@app.cell
def _(AIRBNB_URL, mo, null):
mo.sql(
f"""
SELECT *
FROM '{AIRBNB_URL}'
LIMIT 5;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Using `read_parquet`""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
For more control, you can use the `read_parquet` table function. This is useful when you need to specify options, for example, when dealing with multiple files or specific data types.
Some useful options for `read_parquet` include:
- `binary_as_string=True`: Reads `BINARY` columns as `VARCHAR`.
- `filename=True`: Adds a `filename` column with the path of the file for each row.
- `hive_partitioning=True`: Enables reading of Hive-partitioned datasets.
Here, we'll use `read_parquet` to select only a few relevant columns. This is much more efficient than `SELECT *` because DuckDB only needs to read the data for the columns we specify.
"""
)
return
@app.cell
def _(AIRBNB_URL, mo):
mo.sql(
f"""
SELECT Date, Open, "close_last", High, Low
FROM read_parquet('{AIRBNB_URL}')
LIMIT 5;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
You can also read multiple Parquet files at once using a glob pattern. For example, to read all Parquet files in a directory `data/`:
```sql
SELECT * FROM read_parquet('data/*.parquet');
```
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Creating a table from a Parquet file""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
While querying Parquet files directly is powerful, sometimes it's useful to load the data into a persistent table within your DuckDB database. This can simplify subsequent queries and is a good practice if you'll be accessing the data frequently.
"""
)
return
@app.cell
def _(AIRBNB_URL, mo):
stock_table = mo.sql(
f"""
CREATE OR REPLACE TABLE airbnb_stock AS
SELECT * FROM read_parquet('{AIRBNB_URL}');
"""
)
return airbnb_stock, stock_table
@app.cell(hide_code=True)
def _(mo, stock_table):
mo.md(
f"""
{stock_table}
Now that the `airbnb_stock` table is created, we can query it like any other SQL table.
"""
)
return
@app.cell
def _(airbnb_stock, mo):
mo.sql(
f"""
SELECT * FROM airbnb_stock LIMIT 5;
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Analysis and Visualization""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Let's perform a simple analysis: plotting the closing stock price over time.""")
return
@app.cell
def _(airbnb_stock, mo):
stock_data = mo.sql(
f"""
SELECT
CAST(to_timestamp(Date) AS DATE) AS "Date",
"close_last"
FROM airbnb_stock
ORDER BY "Date";
"""
)
return (stock_data,)
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""Now we can easily visualize this result using marimo's integration with plotting libraries like Plotly.""")
return
@app.cell
def _(px, stock_data):
px.line(
stock_data,
x="Date",
y="close_last",
title="Airbnb (ABNB) Stock Price Over Time",
labels={"Date": "Date", "close_last": "Closing Price (USD)"},
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""## Conclusion""")
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
In this notebook, we've seen how easy it is to work with Parquet files in DuckDB. We learned how to:
<ul>
<li>Query Parquet files directly from a URL using a simple `FROM` clause.</li>
<li>Use the `read_parquet` function for more fine-grained control and efficiency.</li>
<li>Load data from a Parquet file into a DuckDB table.</li>
<li>Seamlessly analyze and visualize the data using SQL and Python.</li>
</ul>
DuckDB's native Parquet support makes it a powerful tool for interactive data analysis on large datasets without complex ETL pipelines.
"""
)
return
@app.cell
def _():
import marimo as mo
import plotly.express as px
return mo, px
@app.cell
def _():
import pyarrow
return
if __name__ == "__main__":
app.run()
|