File size: 3,035 Bytes
5b120a4
 
 
 
 
 
 
 
 
 
 
37429b9
 
5b120a4
 
37429b9
 
 
5b120a4
37429b9
5b120a4
 
 
 
 
 
37429b9
 
 
5b120a4
 
 
 
 
 
 
 
 
 
 
 
 
37429b9
 
 
5b120a4
 
 
37429b9
 
5b120a4
 
 
37429b9
 
 
5b120a4
 
 
 
37429b9
 
 
 
5b120a4
 
 
37429b9
 
 
5b120a4
 
 
37429b9
5b120a4
 
 
37429b9
5b120a4
37429b9
 
 
5b120a4
 
 
37429b9
 
 
5b120a4
 
 
 
 
 
 
 
 
 
37429b9
 
 
 
5b120a4
 
 
37429b9
 
 
5b120a4
 
 
37429b9
 
 
 
5b120a4
 
37429b9
 
 
 
5b120a4
 
37429b9
 
 
 
5b120a4
 
37429b9
 
 
 
5b120a4
 
37429b9
 
 
 
5b120a4
37429b9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# /// script
# requires-python = ">=3.13"
# dependencies = [
#     "marimo",
#     "polars==1.29.0",
#     "pyarrow==20.0.0",
#     "pyiceberg==0.9.1",
#     "sqlalchemy==2.0.40",
# ]
# ///

import marimo

__generated_with = "0.13.7"
app = marimo.App(width="full")


@app.cell
def _():
    import marimo as mo
    import sqlalchemy
    import polars as pl
    from pathlib import Path
    from pyiceberg.partitioning import PartitionSpec, PartitionField
    from pyiceberg.transforms import IdentityTransform
    return IdentityTransform, PartitionField, PartitionSpec, mo, pl


@app.cell
def _():
    from pyiceberg.catalog import load_catalog

    warehouse_path = "warehouse"
    catalog = load_catalog(
        "default",
        **{
            'type': 'sql',
            "uri": f"sqlite:///{warehouse_path}/iceberg.db",
            "warehouse": f"file://{warehouse_path}",
        },
    )
    return (catalog,)


@app.cell
def _(pl):
    df_taxi = pl.read_csv("yellow_tripdata_2015-01.csv").to_arrow()
    return (df_taxi,)


@app.cell
def _(df_taxi):
    df_taxi.group_by("passenger_count").aggregate([([], "count_all")])
    return


@app.cell
def _(IdentityTransform, PartitionField, PartitionSpec):
    spec = PartitionSpec(
        PartitionField(source_id=3, field_id=1000, name="passenger_count", transform=IdentityTransform())
    )
    return


@app.cell
def _(df_taxi):
    df_taxi.schema
    return


@app.cell
def _(catalog, df_taxi):
    catalog.create_namespace_if_not_exists("default")

    table = catalog.create_table_if_not_exists(
        "default.taxi",
        schema=df_taxi.schema,
    )
    return (table,)


@app.cell
def _(df_taxi, table):
    if not table.current_snapshot():
        table.append(df_taxi)
    return


@app.cell
def _(catalog):
    (
        catalog
            .load_table("default.taxi")
            .to_polars()
            .group_by("passenger_count")
            .len()
            .sort("passenger_count")
            .collect()
    )
    return


@app.cell
def _(pl):
    pl.scan_csv("yellow_tripdata_2015-01.csv").group_by("passenger_count").len().sort("passenger_count").collect()
    return


@app.cell
def _(pl):
    pl.read_csv("yellow_tripdata_2015-01.csv").group_by("passenger_count").len().sort("passenger_count")
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(r"""The partition is great, but the comparison with `read_csv` is a bit unfair. Let's convert the `.csv` file to `.parquet` and also add a partition in polars with statistics. """)
    return


@app.cell
def _(pl):
    pl.read_csv("yellow_tripdata_2015-01.csv").write_parquet("taxi.parquet", partition_by=["passenger_count"], statistics=True)
    return


@app.cell
def _(pl):
    pl.scan_parquet("taxi.parquet").group_by("passenger_count").len().sort("passenger_count").collect()
    return


@app.cell
def _(pl):
    pl.read_parquet("taxi.parquet").group_by("passenger_count").len().sort("passenger_count")
    return


@app.cell
def _():
    return


if __name__ == "__main__":
    app.run()