Spaces:
Running
Running
File size: 7,203 Bytes
2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 f06d2fd 2743dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "chromadb==1.0.4",
# "datasets==3.5.0",
# "marimo",
# "matplotlib==3.10.1",
# "numpy==2.2.4",
# "open-clip-torch==2.32.0",
# "pillow==11.1.0",
# ]
# ///
import marimo
__generated_with = "0.12.8"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Multimodal Retrieval
Chroma supports multimodal collections, i.e. collections which contain, and can be queried by, multiple modalities of data.
This notebook shows an example of how to create and query a collection with both text and images, using Chroma's built-in features.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Dataset
We us a small subset of the [coco object detection dataset](https://huggingface.co/datasets/detection-datasets/coco), hosted on HuggingFace.
We download a small fraction of all the images in the dataset locally, and use it to create a multimodal collection.
"""
)
return
@app.cell
def _():
import os
from datasets import load_dataset
from matplotlib import pyplot as plt
return load_dataset, os
@app.cell
def _(load_dataset, mo):
with mo.status.spinner(title="Loading dataset"):
dataset = load_dataset(
path="detection-datasets/coco",
name="default",
split="train",
streaming=True,
)
N_IMAGES = 20
return N_IMAGES, dataset
@app.cell
def _(N_IMAGES, dataset, mo, os):
# Write the images to a folder
IMAGE_FOLDER = "images"
os.makedirs(IMAGE_FOLDER, exist_ok=True)
i = 0
all_images = []
with mo.status.spinner(title="Loading images"):
for row in dataset.take(N_IMAGES):
image = row["image"]
all_images.append(image)
image.save(f"images/{i}.jpg")
i += 1
return IMAGE_FOLDER, all_images
@app.cell(hide_code=True)
def _(mo):
img_width = mo.ui.slider(
label="Image width", start=100, stop=300, step=10, debounce=True
)
img_width
return (img_width,)
@app.cell(hide_code=True)
def _(all_images, img_width, mo):
import io
def as_image(src):
img_byte_arr = io.BytesIO()
src.save(img_byte_arr, format=src.format or "PNG")
img_byte_arr.seek(0)
return mo.image(img_byte_arr, width=img_width.value)
mo.hstack(
[as_image(_img) for _img in all_images[10:]],
wrap=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Ingesting multimodal data
Chroma supports multimodal collections by referencing external URIs for data types other than text.
All you have to do is specify a data loader when creating the collection, and then provide the URI for each entry.
For this example, we are only adding images, though you can also add text.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Creating a multi-modal collection
First we create the default Chroma client.
"""
)
return
@app.cell
def _():
import chromadb
client = chromadb.Client()
return (client,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
Next we specify an embedding function and a data loader.
The built-in `OpenCLIPEmbeddingFunction` works with both text and image data. The `ImageLoader` is a simple data loader that loads images from a local directory.
"""
)
return
@app.cell
def _():
from chromadb.utils.data_loaders import ImageLoader
from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
embedding_function = OpenCLIPEmbeddingFunction()
image_loader = ImageLoader()
return embedding_function, image_loader
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""We create a collection with the embedding function and data loader.""")
return
@app.cell
def _(IMAGE_FOLDER, client, embedding_function, image_loader, os):
collection = client.create_collection(
name="multimodal_collection",
embedding_function=embedding_function,
data_loader=image_loader,
get_or_create=True,
)
# Get the uris to the images
image_uris = sorted(
[
os.path.join(IMAGE_FOLDER, image_name)
for image_name in os.listdir(IMAGE_FOLDER)
]
)
ids = [str(i) for i in range(len(image_uris))]
collection.add(ids=ids, uris=image_uris)
return (collection,)
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Adding multi-modal data
We add image data to the collection using the image URIs. The data loader and embedding functions we specified earlier will ingest data from the provided URIs automatically.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Querying a multi-modal collection
We can query the collection using text as normal, since the `OpenCLIPEmbeddingFunction` works with both text and images.
"""
)
return
@app.cell(hide_code=True)
def _(mo):
query = mo.ui.text_area(label="Query with text", full_width=True).form(
bordered=False
)
mo.vstack([query, mo.md("Try: *animal* or *vehicle*")])
return (query,)
@app.cell
def _(collection, mo, query):
mo.stop(not query.value)
_retrieved = collection.query(
query_texts=[query.value], include=["data"], n_results=3
)
[mo.image(img, height=200) for img in _retrieved["data"][0]]
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
/// admonition | One more thing!
We can also query by images directly, by using the `query_images` field in the `collection.query` method.
///
"""
)
return
@app.cell
def _(collection, mo, selected_image):
mo.stop(not selected_image.value)
import numpy as np
from PIL import Image
query_image = np.array(Image.open(selected_image.path()))
selected = mo.as_html(mo.image(query_image))
_retrieved = collection.query(
query_images=[query_image], include=["data"], n_results=5
)
results = [mo.image(_img) for _img in _retrieved["data"][0][1:]]
return results, selected
@app.cell(hide_code=True)
def _(IMAGE_FOLDER, mo):
selected_image = mo.ui.file_browser(IMAGE_FOLDER, multiple=False)
selected_image
return (selected_image,)
@app.cell(hide_code=True)
def _(mo, results, selected):
mo.hstack(
[
mo.vstack([mo.md("## Selected"), selected]),
mo.vstack([mo.md("## Similar"), *results]),
],
widths="equal",
gap=4,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(r"""This example was adapted from [multimodal_retrieval.ipynb](https://github.com/chroma-core/chroma/blob/main/examples/multimodal/multimodal_retrieval.ipynb), using `marimo convert`.""")
return
if __name__ == "__main__":
app.run() |