import argparse import os import shutil from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.schema.document import Document from get_embedding_function import get_embedding_function from langchain_chroma import Chroma CHROMA_ROOT_PATH = "chroma" DATA_ROOT_PATH = "pdf" def main(): parser = argparse.ArgumentParser() parser.add_argument("--reset", action="store_true", help="Reset the databases.") args = parser.parse_args() if args.reset: print("Clearing all Chromas") clear_all_databases() for city_folder in os.listdir(DATA_ROOT_PATH): city_path = os.path.join(DATA_ROOT_PATH, city_folder) if os.path.isdir(city_path): print(f"🔄 Processando a cidade: {city_folder}") process_city(city_folder, city_path) def process_city(city_name: str, city_path: str): """ Processa uma subpasta de cidade, criando ou atualizando o Chroma correspondente. """ chroma_city_path = os.path.join(CHROMA_ROOT_PATH, f"{city_name}") documents = load_documents(city_path) chunks = split_documents(documents) add_to_chroma(chunks, chroma_city_path) def load_documents(city_path: str): """ Carrega documentos PDF da subpasta de uma cidade. """ document_loader = PyPDFDirectoryLoader(city_path) return document_loader.load() def split_documents(documents: list[Document]): """ Divide os documentos em chunks menores. """ text_splitter = RecursiveCharacterTextSplitter( chunk_size=800, chunk_overlap=80, length_function=len, is_separator_regex=False, ) return text_splitter.split_documents(documents) def add_to_chroma(chunks: list[Document], chroma_path: str): """ Adiciona ou atualiza os documentos no Chroma específico da cidade. """ db = Chroma( persist_directory=chroma_path, embedding_function=get_embedding_function() ) chunks_with_ids = calculate_chunk_ids(chunks) existing_items = db.get(include=[]) existing_ids = set(existing_items["ids"]) print(f"Número de documentos no banco de dados '{chroma_path}': {len(existing_ids)}") new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids] if len(new_chunks): print(f"👉 Adicionando {len(new_chunks)} novo(s) documento(s) ao banco '{chroma_path}'") new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] db.add_documents(new_chunks, ids=new_chunk_ids) else: print(f"✅ Nenhum novo documento para adicionar ao banco '{chroma_path}'") def calculate_chunk_ids(chunks): """ Calcula IDs únicos para cada chunk com base na fonte e na página. """ last_page_id = None current_chunk_index = 0 for chunk in chunks: source = chunk.metadata.get("source") page = chunk.metadata.get("page") current_page_id = f"{source}:{page}" if current_page_id == last_page_id: current_chunk_index += 1 else: current_chunk_index = 0 chunk_id = f"{current_page_id}:{current_chunk_index}" last_page_id = current_page_id chunk.metadata["id"] = chunk_id return chunks def clear_all_databases(): """ Remove todos os bancos de dados Chroma existentes. """ if os.path.exists(CHROMA_ROOT_PATH): shutil.rmtree(CHROMA_ROOT_PATH) if __name__ == "__main__": main()