Agente-Turistico / populate_database.py
mariemerenc's picture
Upload 15 files
b2437ae verified
import argparse
import os
import shutil
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from get_embedding_function import get_embedding_function
from langchain_chroma import Chroma
CHROMA_ROOT_PATH = "chroma"
DATA_ROOT_PATH = "pdf"
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--reset", action="store_true", help="Reset the databases.")
args = parser.parse_args()
if args.reset:
print("Clearing all Chromas")
clear_all_databases()
for city_folder in os.listdir(DATA_ROOT_PATH):
city_path = os.path.join(DATA_ROOT_PATH, city_folder)
if os.path.isdir(city_path):
print(f"🔄 Processando a cidade: {city_folder}")
process_city(city_folder, city_path)
def process_city(city_name: str, city_path: str):
"""
Processa uma subpasta de cidade, criando ou atualizando o Chroma correspondente.
"""
chroma_city_path = os.path.join(CHROMA_ROOT_PATH, f"{city_name}")
documents = load_documents(city_path)
chunks = split_documents(documents)
add_to_chroma(chunks, chroma_city_path)
def load_documents(city_path: str):
"""
Carrega documentos PDF da subpasta de uma cidade.
"""
document_loader = PyPDFDirectoryLoader(city_path)
return document_loader.load()
def split_documents(documents: list[Document]):
"""
Divide os documentos em chunks menores.
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
return text_splitter.split_documents(documents)
def add_to_chroma(chunks: list[Document], chroma_path: str):
"""
Adiciona ou atualiza os documentos no Chroma específico da cidade.
"""
db = Chroma(
persist_directory=chroma_path, embedding_function=get_embedding_function()
)
chunks_with_ids = calculate_chunk_ids(chunks)
existing_items = db.get(include=[])
existing_ids = set(existing_items["ids"])
print(f"Número de documentos no banco de dados '{chroma_path}': {len(existing_ids)}")
new_chunks = [chunk for chunk in chunks_with_ids if chunk.metadata["id"] not in existing_ids]
if len(new_chunks):
print(f"👉 Adicionando {len(new_chunks)} novo(s) documento(s) ao banco '{chroma_path}'")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
else:
print(f"✅ Nenhum novo documento para adicionar ao banco '{chroma_path}'")
def calculate_chunk_ids(chunks):
"""
Calcula IDs únicos para cada chunk com base na fonte e na página.
"""
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
chunk.metadata["id"] = chunk_id
return chunks
def clear_all_databases():
"""
Remove todos os bancos de dados Chroma existentes.
"""
if os.path.exists(CHROMA_ROOT_PATH):
shutil.rmtree(CHROMA_ROOT_PATH)
if __name__ == "__main__":
main()