marianna13's picture
added phi
ef52c23
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
from huggingface_hub import hf_hub_download
import json
def get_open_clip_image_processor(model_name):
config_path = hf_hub_download(model_name, filename="open_clip_config.json")
with open(config_path, 'r') as f:
config = json.load(f)
image_size = config['model_cfg']['vision_cfg']['image_size']
image_mean = config['preprocess_cfg']['mean']
image_std = config['preprocess_cfg']['std']
size = {"shortest_edge": image_size}
crop_size = {
"height": image_size,
"width": image_size
}
return CLIPImageProcessor(
image_size=image_size,
image_mean=image_mean,
image_std=image_std,
crop_size=crop_size,
size=size
)
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
if not delay_load:
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self):
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
if self.vision_tower_name.startswith("apple") or self.vision_tower_name.startswith("laion"):
self.image_processor = get_open_clip_image_processor(self.vision_tower_name)
else:
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2