Spaces:
Runtime error
Runtime error
File size: 13,085 Bytes
8fb6272 62fec37 8fb6272 b181644 1ccfc24 8fb6272 b181644 8fb6272 b181644 8fb6272 b181644 577120c b181644 8fb6272 b181644 8fb6272 b181644 8fb6272 577120c 62fec37 577120c b181644 8fb6272 b181644 8fb6272 b181644 62fec37 577120c 8fb6272 b181644 8fb6272 b181644 8fb6272 1ccfc24 b181644 8fb6272 b181644 8fb6272 62fec37 b181644 8fb6272 62fec37 8fb6272 1ccfc24 8fb6272 1ccfc24 8fb6272 1ccfc24 8fb6272 1ccfc24 8fb6272 810f531 8fb6272 62fec37 b181644 62fec37 b181644 62fec37 b181644 1ccfc24 b181644 1ccfc24 b181644 8fb6272 1ccfc24 b181644 1ccfc24 8fb6272 1ccfc24 d78970a 1ccfc24 d78970a b181644 d78970a 1ccfc24 d78970a 1ccfc24 d78970a 1ccfc24 d78970a 8fb6272 810f531 62fec37 810f531 62fec37 810f531 62fec37 810f531 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import torch
import torch.nn.functional as F
import logging
import os
import gc
import numpy as np
import cv2
from PIL import Image
from typing import List, Dict, Any, Tuple
from transformers import Owlv2Processor, Owlv2ForObjectDetection
from .base import BaseDetector
import time
logger = logging.getLogger(__name__)
class WeaponDetectorGPU(BaseDetector):
"""Detector de armas otimizado para GPU."""
def __init__(self):
"""Inicializa o detector."""
super().__init__()
self.default_resolution = 640
self.device = None # Será configurado em _initialize
self._initialize()
def _initialize(self):
"""Inicializa o modelo."""
try:
# Configurar device
if not torch.cuda.is_available():
raise RuntimeError("CUDA não está disponível!")
# Configurar device corretamente
self.device = torch.device("cuda:0") # Usar device CUDA
# Carregar modelo e processador
logger.info("Carregando modelo e processador...")
model_name = "google/owlv2-base-patch16"
self.owlv2_processor = Owlv2Processor.from_pretrained(model_name)
self.owlv2_model = Owlv2ForObjectDetection.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map={"": 0} # Mapear todo o modelo para GPU 0
)
# Otimizar modelo
self.owlv2_model.eval()
# Processar queries
self.text_queries = self._get_detection_queries()
logger.info(f"Queries carregadas: {self.text_queries}") # Log das queries
self.processed_text = self.owlv2_processor(
text=self.text_queries,
return_tensors="pt",
padding=True
)
self.processed_text = {
key: val.to(self.device)
for key, val in self.processed_text.items()
}
logger.info("Inicialização GPU completa!")
self._initialized = True
except Exception as e:
logger.error(f"Erro na inicialização GPU: {str(e)}")
raise
def detect_objects(self, image: Image.Image, threshold: float = 0.3) -> List[Dict]:
"""Detecta objetos em uma imagem."""
try:
# Pré-processar imagem
image = self._preprocess_image(image)
# Processar imagem
image_inputs = self.owlv2_processor(
images=image,
return_tensors="pt"
)
image_inputs = {
key: val.to(self.device)
for key, val in image_inputs.items()
}
# Inferência
with torch.no_grad():
inputs = {**image_inputs, **self.processed_text}
outputs = self.owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]], device=self.device)
results = self.owlv2_processor.post_process_grounded_object_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=threshold
)[0]
# Processar detecções
detections = []
if len(results["scores"]) > 0:
scores = results["scores"]
boxes = results["boxes"]
labels = results["labels"]
for score, box, label in zip(scores, boxes, labels):
score_val = score.item()
if score_val >= threshold:
# Garantir que o índice está dentro dos limites
label_idx = min(label.item(), len(self.text_queries) - 1)
label_text = self.text_queries[label_idx]
detections.append({
"confidence": round(score_val * 100, 2), # Converter para porcentagem
"box": [int(x) for x in box.tolist()],
"label": label_text
})
logger.debug(f"Detecção: {label_text} ({score_val * 100:.2f}%)")
# Aplicar NMS nas detecções
detections = self._apply_nms(detections)
return detections
except Exception as e:
logger.error(f"Erro em detect_objects: {str(e)}")
return []
def _get_best_device(self) -> torch.device:
"""Retorna o melhor dispositivo disponível."""
if torch.cuda.is_available():
return torch.device("cuda:0")
return torch.device("cpu")
def _clear_gpu_memory(self):
"""Limpa memória GPU."""
torch.cuda.empty_cache()
gc.collect()
def process_video(self, video_path: str, fps: int = None, threshold: float = 0.3, resolution: int = 640) -> Tuple[str, Dict]:
"""Processa um vídeo."""
metrics = {
"total_time": 0,
"frame_extraction_time": 0,
"analysis_time": 0,
"frames_analyzed": 0,
"video_duration": 0,
"device_type": "GPU",
"detections": []
}
try:
start_time = time.time()
# Extrair frames
t0 = time.time()
frames = self.extract_frames(video_path, fps or 2, resolution)
metrics["frame_extraction_time"] = time.time() - t0
metrics["frames_analyzed"] = len(frames)
if not frames:
logger.warning("Nenhum frame extraído do vídeo")
return video_path, metrics
# Calcular duração do vídeo
metrics["video_duration"] = len(frames) / (fps or 2)
# Processar frames em batch
t0 = time.time()
batch_size = 16 # Aumentado para T4 dedicada
detections_by_frame = []
for i in range(0, len(frames), batch_size):
batch_frames = frames[i:i + batch_size]
batch_pil_frames = []
# Preparar batch
for frame in batch_frames:
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_pil = Image.fromarray(frame_rgb)
frame_pil = self._preprocess_image(frame_pil)
batch_pil_frames.append(frame_pil)
# Processar batch
batch_inputs = self.owlv2_processor(
images=batch_pil_frames,
return_tensors="pt",
padding=True
)
batch_inputs = {
key: val.to(self.device)
for key, val in batch_inputs.items()
}
# Inferência em batch
with torch.no_grad():
inputs = {**batch_inputs, **self.processed_text}
outputs = self.owlv2_model(**inputs)
target_sizes = torch.tensor(
[frame.size[::-1] for frame in batch_pil_frames],
device=self.device
)
results = self.owlv2_processor.post_process_grounded_object_detection(
outputs=outputs,
target_sizes=target_sizes,
threshold=threshold
)
# Processar resultados do batch
for frame_idx, frame_results in enumerate(results):
if len(frame_results["scores"]) > 0:
scores = frame_results["scores"]
boxes = frame_results["boxes"]
labels = frame_results["labels"]
frame_detections = []
for score, box, label in zip(scores, boxes, labels):
score_val = score.item()
if score_val >= threshold:
label_idx = min(label.item(), len(self.text_queries) - 1)
label_text = self.text_queries[label_idx]
frame_detections.append({
"confidence": round(score_val * 100, 2),
"box": [int(x) for x in box.tolist()],
"label": label_text
})
if frame_detections:
frame_detections = self._apply_nms(frame_detections)
detections_by_frame.append({
"frame": i + frame_idx,
"detections": frame_detections
})
# Liberar memória do batch
del batch_inputs, outputs
torch.cuda.empty_cache()
# Atualizar métricas finais
metrics["analysis_time"] = time.time() - t0
metrics["total_time"] = time.time() - start_time
metrics["detections"] = detections_by_frame
return video_path, metrics
except Exception as e:
logger.error(f"Erro ao processar vídeo: {str(e)}")
return video_path, metrics
def _preprocess_image(self, image: Image.Image) -> Image.Image:
"""Pré-processa a imagem para o formato esperado pelo modelo."""
try:
# Converter para RGB se necessário
if image.mode != 'RGB':
image = image.convert('RGB')
# Redimensionar mantendo proporção
target_size = (self.default_resolution, self.default_resolution)
if image.size != target_size:
ratio = min(target_size[0] / image.size[0], target_size[1] / image.size[1])
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Adicionar padding se necessário
if new_size != target_size:
new_image = Image.new('RGB', target_size, (0, 0, 0))
paste_x = (target_size[0] - new_size[0]) // 2
paste_y = (target_size[1] - new_size[1]) // 2
new_image.paste(image, (paste_x, paste_y))
image = new_image
return image
except Exception as e:
logger.error(f"Erro no pré-processamento: {str(e)}")
return image
def _apply_nms(self, detections: List[Dict], iou_threshold: float = 0.5) -> List[Dict]:
"""Aplica Non-Maximum Suppression nas detecções."""
try:
if not detections or len(detections) <= 1:
return detections
# Extrair scores e boxes
scores = torch.tensor([d["confidence"] for d in detections], device=self.device)
boxes = torch.tensor([[d["box"][0], d["box"][1], d["box"][2], d["box"][3]]
for d in detections], device=self.device)
# Ordenar por score
_, order = scores.sort(descending=True)
keep = []
while order.numel() > 0:
if order.numel() == 1:
keep.append(order.item())
break
i = order[0]
keep.append(i.item())
# Calcular IoU com os boxes restantes
box1 = boxes[i]
box2 = boxes[order[1:]]
# Calcular interseção
left = torch.max(box1[0], box2[:, 0])
top = torch.max(box1[1], box2[:, 1])
right = torch.min(box1[2], box2[:, 2])
bottom = torch.min(box1[3], box2[:, 3])
width = torch.clamp(right - left, min=0)
height = torch.clamp(bottom - top, min=0)
inter = width * height
# Calcular união
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1])
union = area1 + area2 - inter
# Calcular IoU
iou = inter / union
mask = iou <= iou_threshold
order = order[1:][mask]
# Retornar detecções filtradas
return [detections[i] for i in keep]
except Exception as e:
logger.error(f"Erro ao aplicar NMS: {str(e)}")
return detections |