# Adapted from https://github.com/m-bain/whisperX/blob/main/whisperx/audio.py

import os
import subprocess
from functools import lru_cache
from typing import Optional, Union
from scipy.io.wavfile import write
import tempfile

import numpy as np
import torch
import torch.nn.functional as F

def exact_div(x, y):
    assert x % y == 0
    return x // y

# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE  # 480000 samples in a 30-second chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH)  # 3000 frames in a mel spectrogram input

N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2  # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH)  # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN)  # 20ms per audio token


def load_audio(file: Union[str, np.ndarray], sr: int = SAMPLE_RATE) -> np.ndarray:
    """
    Open an audio file or process a numpy array containing audio data as mono waveform, resampling as necessary.

    Parameters
    ----------
    file: Union[str, np.ndarray]
        The audio file to open or a numpy array containing the audio data.

    sr: int
        The sample rate to resample the audio if necessary.

    Returns
    -------
    A NumPy array containing the audio waveform, in float32 dtype.
    """
    if isinstance(file, np.ndarray):
        if file.dtype != np.float32:
            file = file.astype(np.float32)
        if file.ndim > 1:
            file = np.mean(file, axis=1)

        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
        write(temp_file.name, SAMPLE_RATE, (file * 32768).astype(np.int16))
        temp_file_path = temp_file.name
        temp_file.close()
    else:
        temp_file_path = file

    try:
        cmd = [
            "ffmpeg",
            "-nostdin",
            "-threads",
            "0",
            "-i",
            temp_file_path,
            "-f",
            "s16le",
            "-ac",
            "1",
            "-acodec",
            "pcm_s16le",
            "-ar",
            str(sr),
            "-",
        ]
        out = subprocess.run(cmd, capture_output=True, check=True).stdout
    except subprocess.CalledProcessError as e:
        raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
    finally:
        if isinstance(file, np.ndarray):
            os.remove(temp_file_path)

    return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0


def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
    """
    Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
    """
    if torch.is_tensor(array):
        if array.shape[axis] > length:
            array = array.index_select(
                dim=axis, index=torch.arange(length, device=array.device)
            )

        if array.shape[axis] < length:
            pad_widths = [(0, 0)] * array.ndim
            pad_widths[axis] = (0, length - array.shape[axis])
            array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
    else:
        if array.shape[axis] > length:
            array = array.take(indices=range(length), axis=axis)

        if array.shape[axis] < length:
            pad_widths = [(0, 0)] * array.ndim
            pad_widths[axis] = (0, length - array.shape[axis])
            array = np.pad(array, pad_widths)

    return array


@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int) -> torch.Tensor:
    """
    load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
    Allows decoupling librosa dependency; saved using:

        np.savez_compressed(
            "mel_filters.npz",
            mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
        )
    """
    assert n_mels in [80, 128], f"Unsupported n_mels: {n_mels}"
    with np.load(
        os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
    ) as f:
        return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)


def log_mel_spectrogram(
    audio: Union[str, np.ndarray, torch.Tensor],
    n_mels: int,
    padding: int = 0,
    device: Optional[Union[str, torch.device]] = None,
):
    """
    Compute the log-Mel spectrogram of

    Parameters
    ----------
    audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
        The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz

    n_mels: int
        The number of Mel-frequency filters, only 80 is supported

    padding: int
        Number of zero samples to pad to the right

    device: Optional[Union[str, torch.device]]
        If given, the audio tensor is moved to this device before STFT

    Returns
    -------
    torch.Tensor, shape = (80, n_frames)
        A Tensor that contains the Mel spectrogram
    """
    if not torch.is_tensor(audio):
        if isinstance(audio, str):
            audio = load_audio(audio)
        audio = torch.from_numpy(audio)

    if device is not None:
        audio = audio.to(device)
    if padding > 0:
        audio = F.pad(audio, (0, padding))
    window = torch.hann_window(N_FFT).to(audio.device)
    stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
    magnitudes = stft[..., :-1].abs() ** 2

    filters = mel_filters(audio.device, n_mels)
    mel_spec = filters @ magnitudes

    log_spec = torch.clamp(mel_spec, min=1e-10).log10()
    log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
    log_spec = (log_spec + 4.0) / 4.0
    return log_spec