Spaces:
Running
Running
jhj0517
commited on
Commit
·
df6fc6f
1
Parent(s):
a88b526
Refactor dataclasses
Browse files- modules/whisper/data_classes.py +462 -339
modules/whisper/data_classes.py
CHANGED
@@ -1,371 +1,494 @@
|
|
1 |
-
from dataclasses import dataclass, fields
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
import yaml
|
5 |
|
6 |
from modules.utils.constants import AUTOMATIC_DETECTION
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
is_translate: gr.Checkbox
|
14 |
-
beam_size: gr.Number
|
15 |
-
log_prob_threshold: gr.Number
|
16 |
-
no_speech_threshold: gr.Number
|
17 |
-
compute_type: gr.Dropdown
|
18 |
-
best_of: gr.Number
|
19 |
-
patience: gr.Number
|
20 |
-
condition_on_previous_text: gr.Checkbox
|
21 |
-
prompt_reset_on_temperature: gr.Slider
|
22 |
-
initial_prompt: gr.Textbox
|
23 |
-
temperature: gr.Slider
|
24 |
-
compression_ratio_threshold: gr.Number
|
25 |
-
vad_filter: gr.Checkbox
|
26 |
-
threshold: gr.Slider
|
27 |
-
min_speech_duration_ms: gr.Number
|
28 |
-
max_speech_duration_s: gr.Number
|
29 |
-
min_silence_duration_ms: gr.Number
|
30 |
-
speech_pad_ms: gr.Number
|
31 |
-
batch_size: gr.Number
|
32 |
-
is_diarize: gr.Checkbox
|
33 |
-
hf_token: gr.Textbox
|
34 |
-
diarization_device: gr.Dropdown
|
35 |
-
length_penalty: gr.Number
|
36 |
-
repetition_penalty: gr.Number
|
37 |
-
no_repeat_ngram_size: gr.Number
|
38 |
-
prefix: gr.Textbox
|
39 |
-
suppress_blank: gr.Checkbox
|
40 |
-
suppress_tokens: gr.Textbox
|
41 |
-
max_initial_timestamp: gr.Number
|
42 |
-
word_timestamps: gr.Checkbox
|
43 |
-
prepend_punctuations: gr.Textbox
|
44 |
-
append_punctuations: gr.Textbox
|
45 |
-
max_new_tokens: gr.Number
|
46 |
-
chunk_length: gr.Number
|
47 |
-
hallucination_silence_threshold: gr.Number
|
48 |
-
hotwords: gr.Textbox
|
49 |
-
language_detection_threshold: gr.Number
|
50 |
-
language_detection_segments: gr.Number
|
51 |
-
is_bgm_separate: gr.Checkbox
|
52 |
-
uvr_model_size: gr.Dropdown
|
53 |
-
uvr_device: gr.Dropdown
|
54 |
-
uvr_segment_size: gr.Number
|
55 |
-
uvr_save_file: gr.Checkbox
|
56 |
-
uvr_enable_offload: gr.Checkbox
|
57 |
-
"""
|
58 |
-
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
59 |
-
This data class is used to mitigate the key-value problem between Gradio components and function parameters.
|
60 |
-
Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471
|
61 |
-
See more about Gradio pre-processing: https://www.gradio.app/docs/components
|
62 |
|
63 |
-
Attributes
|
64 |
-
----------
|
65 |
-
model_size: gr.Dropdown
|
66 |
-
Whisper model size.
|
67 |
-
|
68 |
-
lang: gr.Dropdown
|
69 |
-
Source language of the file to transcribe.
|
70 |
-
|
71 |
-
is_translate: gr.Checkbox
|
72 |
-
Boolean value that determines whether to translate to English.
|
73 |
-
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
74 |
-
|
75 |
-
beam_size: gr.Number
|
76 |
-
Int value that is used for decoding option.
|
77 |
-
|
78 |
-
log_prob_threshold: gr.Number
|
79 |
-
If the average log probability over sampled tokens is below this value, treat as failed.
|
80 |
-
|
81 |
-
no_speech_threshold: gr.Number
|
82 |
-
If the no_speech probability is higher than this value AND
|
83 |
-
the average log probability over sampled tokens is below `log_prob_threshold`,
|
84 |
-
consider the segment as silent.
|
85 |
-
|
86 |
-
compute_type: gr.Dropdown
|
87 |
-
compute type for transcription.
|
88 |
-
see more info : https://opennmt.net/CTranslate2/quantization.html
|
89 |
-
|
90 |
-
best_of: gr.Number
|
91 |
-
Number of candidates when sampling with non-zero temperature.
|
92 |
-
|
93 |
-
patience: gr.Number
|
94 |
-
Beam search patience factor.
|
95 |
-
|
96 |
-
condition_on_previous_text: gr.Checkbox
|
97 |
-
if True, the previous output of the model is provided as a prompt for the next window;
|
98 |
-
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
99 |
-
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
100 |
-
|
101 |
-
initial_prompt: gr.Textbox
|
102 |
-
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
103 |
-
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
104 |
-
to make it more likely to predict those word correctly.
|
105 |
-
|
106 |
-
temperature: gr.Slider
|
107 |
-
Temperature for sampling. It can be a tuple of temperatures,
|
108 |
-
which will be successively used upon failures according to either
|
109 |
-
`compression_ratio_threshold` or `log_prob_threshold`.
|
110 |
-
|
111 |
-
compression_ratio_threshold: gr.Number
|
112 |
-
If the gzip compression ratio is above this value, treat as failed
|
113 |
-
|
114 |
-
vad_filter: gr.Checkbox
|
115 |
-
Enable the voice activity detection (VAD) to filter out parts of the audio
|
116 |
-
without speech. This step is using the Silero VAD model
|
117 |
-
https://github.com/snakers4/silero-vad.
|
118 |
-
|
119 |
-
threshold: gr.Slider
|
120 |
-
This parameter is related with Silero VAD. Speech threshold.
|
121 |
-
Silero VAD outputs speech probabilities for each audio chunk,
|
122 |
-
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
123 |
-
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
124 |
-
|
125 |
-
min_speech_duration_ms: gr.Number
|
126 |
-
This parameter is related with Silero VAD. Final speech chunks shorter min_speech_duration_ms are thrown out.
|
127 |
-
|
128 |
-
max_speech_duration_s: gr.Number
|
129 |
-
This parameter is related with Silero VAD. Maximum duration of speech chunks in seconds. Chunks longer
|
130 |
-
than max_speech_duration_s will be split at the timestamp of the last silence that
|
131 |
-
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
|
132 |
-
split aggressively just before max_speech_duration_s.
|
133 |
-
|
134 |
-
min_silence_duration_ms: gr.Number
|
135 |
-
This parameter is related with Silero VAD. In the end of each speech chunk wait for min_silence_duration_ms
|
136 |
-
before separating it
|
137 |
-
|
138 |
-
speech_pad_ms: gr.Number
|
139 |
-
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
140 |
-
|
141 |
-
batch_size: gr.Number
|
142 |
-
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe
|
143 |
-
|
144 |
-
is_diarize: gr.Checkbox
|
145 |
-
This parameter is related with whisperx. Boolean value that determines whether to diarize or not.
|
146 |
-
|
147 |
-
hf_token: gr.Textbox
|
148 |
-
This parameter is related with whisperx. Huggingface token is needed to download diarization models.
|
149 |
-
Read more about : https://huggingface.co/pyannote/speaker-diarization-3.1#requirements
|
150 |
-
|
151 |
-
diarization_device: gr.Dropdown
|
152 |
-
This parameter is related with whisperx. Device to run diarization model
|
153 |
-
|
154 |
-
length_penalty: gr.Number
|
155 |
-
This parameter is related to faster-whisper. Exponential length penalty constant.
|
156 |
-
|
157 |
-
repetition_penalty: gr.Number
|
158 |
-
This parameter is related to faster-whisper. Penalty applied to the score of previously generated tokens
|
159 |
-
(set > 1 to penalize).
|
160 |
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
suppress_tokens: gr.Textbox
|
171 |
-
This parameter is related to faster-whisper. List of token IDs to suppress. -1 will suppress a default set
|
172 |
-
of symbols as defined in the model config.json file.
|
173 |
|
174 |
-
max_initial_timestamp: gr.Number
|
175 |
-
This parameter is related to faster-whisper. The initial timestamp cannot be later than this.
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
with the next word.
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
max_new_tokens: gr.Number
|
190 |
-
This parameter is related to faster-whisper. Maximum number of new tokens to generate per-chunk. If not set,
|
191 |
-
the maximum will be set by the default max_length.
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
(in seconds) when a possible hallucination is detected.
|
200 |
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
language_detection_threshold: gr.Number
|
205 |
-
This parameter is related to faster-whisper. If the maximum probability of the language tokens is higher than this value, the language is detected.
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
def
|
231 |
-
|
232 |
-
Converts the data class attributes into a list, Use in Gradio UI before Gradio pre-processing.
|
233 |
-
See more about Gradio pre-processing: : https://www.gradio.app/docs/components
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
return [getattr(self, f.name) for f in fields(self)]
|
240 |
|
241 |
-
@
|
242 |
-
def
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
condition_on_previous_text: bool = True
|
267 |
-
prompt_reset_on_temperature: float = 0.5
|
268 |
-
initial_prompt: Optional[str] = None
|
269 |
-
temperature: float = 0.0
|
270 |
-
compression_ratio_threshold: float = 2.4
|
271 |
-
vad_filter: bool = False
|
272 |
-
threshold: float = 0.5
|
273 |
-
min_speech_duration_ms: int = 250
|
274 |
-
max_speech_duration_s: float = float("inf")
|
275 |
-
min_silence_duration_ms: int = 2000
|
276 |
-
speech_pad_ms: int = 400
|
277 |
-
batch_size: int = 24
|
278 |
-
is_diarize: bool = False
|
279 |
-
hf_token: str = ""
|
280 |
-
diarization_device: str = "cuda"
|
281 |
-
length_penalty: float = 1.0
|
282 |
-
repetition_penalty: float = 1.0
|
283 |
-
no_repeat_ngram_size: int = 0
|
284 |
-
prefix: Optional[str] = None
|
285 |
-
suppress_blank: bool = True
|
286 |
-
suppress_tokens: Optional[str] = "[-1]"
|
287 |
-
max_initial_timestamp: float = 0.0
|
288 |
-
word_timestamps: bool = False
|
289 |
-
prepend_punctuations: Optional[str] = "\"'“¿([{-"
|
290 |
-
append_punctuations: Optional[str] = "\"'.。,,!!??::”)]}、"
|
291 |
-
max_new_tokens: Optional[int] = None
|
292 |
-
chunk_length: Optional[int] = 30
|
293 |
-
hallucination_silence_threshold: Optional[float] = None
|
294 |
-
hotwords: Optional[str] = None
|
295 |
-
language_detection_threshold: Optional[float] = None
|
296 |
-
language_detection_segments: int = 1
|
297 |
-
is_bgm_separate: bool = False
|
298 |
-
uvr_model_size: str = "UVR-MDX-NET-Inst_HQ_4"
|
299 |
-
uvr_device: str = "cuda"
|
300 |
-
uvr_segment_size: int = 256
|
301 |
-
uvr_save_file: bool = False
|
302 |
-
uvr_enable_offload: bool = True
|
303 |
-
"""
|
304 |
-
A data class to use Whisper parameters.
|
305 |
-
"""
|
306 |
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
data = {
|
309 |
-
"whisper":
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
"beam_size": self.beam_size,
|
314 |
-
"log_prob_threshold": self.log_prob_threshold,
|
315 |
-
"no_speech_threshold": self.no_speech_threshold,
|
316 |
-
"best_of": self.best_of,
|
317 |
-
"patience": self.patience,
|
318 |
-
"condition_on_previous_text": self.condition_on_previous_text,
|
319 |
-
"prompt_reset_on_temperature": self.prompt_reset_on_temperature,
|
320 |
-
"initial_prompt": None if not self.initial_prompt else self.initial_prompt,
|
321 |
-
"temperature": self.temperature,
|
322 |
-
"compression_ratio_threshold": self.compression_ratio_threshold,
|
323 |
-
"batch_size": self.batch_size,
|
324 |
-
"length_penalty": self.length_penalty,
|
325 |
-
"repetition_penalty": self.repetition_penalty,
|
326 |
-
"no_repeat_ngram_size": self.no_repeat_ngram_size,
|
327 |
-
"prefix": None if not self.prefix else self.prefix,
|
328 |
-
"suppress_blank": self.suppress_blank,
|
329 |
-
"suppress_tokens": self.suppress_tokens,
|
330 |
-
"max_initial_timestamp": self.max_initial_timestamp,
|
331 |
-
"word_timestamps": self.word_timestamps,
|
332 |
-
"prepend_punctuations": self.prepend_punctuations,
|
333 |
-
"append_punctuations": self.append_punctuations,
|
334 |
-
"max_new_tokens": self.max_new_tokens,
|
335 |
-
"chunk_length": self.chunk_length,
|
336 |
-
"hallucination_silence_threshold": self.hallucination_silence_threshold,
|
337 |
-
"hotwords": None if not self.hotwords else self.hotwords,
|
338 |
-
"language_detection_threshold": self.language_detection_threshold,
|
339 |
-
"language_detection_segments": self.language_detection_segments,
|
340 |
-
},
|
341 |
-
"vad": {
|
342 |
-
"vad_filter": self.vad_filter,
|
343 |
-
"threshold": self.threshold,
|
344 |
-
"min_speech_duration_ms": self.min_speech_duration_ms,
|
345 |
-
"max_speech_duration_s": self.max_speech_duration_s,
|
346 |
-
"min_silence_duration_ms": self.min_silence_duration_ms,
|
347 |
-
"speech_pad_ms": self.speech_pad_ms,
|
348 |
-
},
|
349 |
-
"diarization": {
|
350 |
-
"is_diarize": self.is_diarize,
|
351 |
-
"hf_token": self.hf_token
|
352 |
-
},
|
353 |
-
"bgm_separation": {
|
354 |
-
"is_separate_bgm": self.is_bgm_separate,
|
355 |
-
"model_size": self.uvr_model_size,
|
356 |
-
"segment_size": self.uvr_segment_size,
|
357 |
-
"save_file": self.uvr_save_file,
|
358 |
-
"enable_offload": self.uvr_enable_offload
|
359 |
-
},
|
360 |
}
|
361 |
return data
|
362 |
|
363 |
-
def as_list(self) -> list:
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from typing import Optional, Dict, List
|
4 |
+
from pydantic import BaseModel, Field, field_validator
|
5 |
+
from gradio_i18n import Translate, gettext as _
|
6 |
+
from enum import Enum
|
7 |
import yaml
|
8 |
|
9 |
from modules.utils.constants import AUTOMATIC_DETECTION
|
10 |
|
11 |
|
12 |
+
class WhisperImpl(Enum):
|
13 |
+
WHISPER = "whisper"
|
14 |
+
FASTER_WHISPER = "faster-whisper"
|
15 |
+
INSANELY_FAST_WHISPER = "insanely_fast_whisper"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
class VadParams(BaseModel):
|
19 |
+
"""Voice Activity Detection parameters"""
|
20 |
+
vad_filter: bool = Field(default=False, description="Enable voice activity detection to filter out non-speech parts")
|
21 |
+
threshold: float = Field(
|
22 |
+
default=0.5,
|
23 |
+
ge=0.0,
|
24 |
+
le=1.0,
|
25 |
+
description="Speech threshold for Silero VAD. Probabilities above this value are considered speech"
|
26 |
+
)
|
27 |
+
min_speech_duration_ms: int = Field(
|
28 |
+
default=250,
|
29 |
+
ge=0,
|
30 |
+
description="Final speech chunks shorter than this are discarded"
|
31 |
+
)
|
32 |
+
max_speech_duration_s: float = Field(
|
33 |
+
default=float("inf"),
|
34 |
+
gt=0,
|
35 |
+
description="Maximum duration of speech chunks in seconds"
|
36 |
+
)
|
37 |
+
min_silence_duration_ms: int = Field(
|
38 |
+
default=2000,
|
39 |
+
ge=0,
|
40 |
+
description="Minimum silence duration between speech chunks"
|
41 |
+
)
|
42 |
+
speech_pad_ms: int = Field(
|
43 |
+
default=400,
|
44 |
+
ge=0,
|
45 |
+
description="Padding added to each side of speech chunks"
|
46 |
+
)
|
47 |
|
48 |
+
def to_dict(self) -> Dict:
|
49 |
+
return self.model_dump()
|
50 |
|
51 |
+
@classmethod
|
52 |
+
def to_gradio_inputs(cls, defaults: Optional[Dict] = None) -> List[gr.components.base.FormComponent]:
|
53 |
+
defaults = defaults or {}
|
54 |
+
return [
|
55 |
+
gr.Checkbox(label=_("Enable Silero VAD Filter"), value=defaults.get("vad_filter", cls.vad_filter),
|
56 |
+
interactive=True,
|
57 |
+
info=_("Enable this to transcribe only detected voice")),
|
58 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
59 |
+
value=defaults.get("threshold", cls.threshold),
|
60 |
+
info="Lower it to be more sensitive to small sounds."),
|
61 |
+
gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
62 |
+
value=defaults.get("min_speech_duration_ms", cls.min_speech_duration_ms),
|
63 |
+
info="Final speech chunks shorter than this time are thrown out"),
|
64 |
+
gr.Number(label="Maximum Speech Duration (s)",
|
65 |
+
value=defaults.get("max_speech_duration_s", cls.max_speech_duration_s),
|
66 |
+
info="Maximum duration of speech chunks in \"seconds\"."),
|
67 |
+
gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
68 |
+
value=defaults.get("min_silence_duration_ms", cls.min_silence_duration_ms),
|
69 |
+
info="In the end of each speech chunk wait for this time"
|
70 |
+
" before separating it"),
|
71 |
+
gr.Number(label="Speech Padding (ms)", precision=0,
|
72 |
+
value=defaults.get("speech_pad_ms", cls.speech_pad_ms),
|
73 |
+
info="Final speech chunks are padded by this time each side")
|
74 |
+
]
|
75 |
|
|
|
|
|
|
|
76 |
|
|
|
|
|
77 |
|
78 |
+
class DiarizationParams(BaseModel):
|
79 |
+
"""Speaker diarization parameters"""
|
80 |
+
is_diarize: bool = Field(default=False, description="Enable speaker diarization")
|
81 |
+
hf_token: str = Field(
|
82 |
+
default="",
|
83 |
+
description="Hugging Face token for downloading diarization models"
|
84 |
+
)
|
85 |
|
86 |
+
def to_dict(self) -> Dict:
|
87 |
+
return self.model_dump()
|
|
|
88 |
|
89 |
+
@classmethod
|
90 |
+
def to_gradio_inputs(cls,
|
91 |
+
defaults: Optional[Dict] = None,
|
92 |
+
available_devices: Optional[List] = None,
|
93 |
+
device: Optional[str] = None) -> List[gr.components.base.FormComponent]:
|
94 |
+
defaults = defaults or {}
|
95 |
+
return [
|
96 |
+
gr.Checkbox(
|
97 |
+
label=_("Enable Diarization"),
|
98 |
+
value=defaults.get("is_diarize", cls.is_diarize),
|
99 |
+
info=_("Enable speaker diarization")
|
100 |
+
),
|
101 |
+
gr.Textbox(
|
102 |
+
label=_("HuggingFace Token"),
|
103 |
+
value=defaults.get("hf_token", cls.hf_token),
|
104 |
+
info=_("This is only needed the first time you download the model")
|
105 |
+
),
|
106 |
+
gr.Dropdown(
|
107 |
+
label=_("Device"),
|
108 |
+
choices=["cpu", "cuda"] if available_devices is None else available_devices,
|
109 |
+
value="cuda" if device is None else device,
|
110 |
+
info=_("Device to run diarization model")
|
111 |
+
)
|
112 |
+
]
|
113 |
|
|
|
|
|
|
|
114 |
|
115 |
+
class BGMSeparationParams(BaseModel):
|
116 |
+
"""Background music separation parameters"""
|
117 |
+
is_separate_bgm: bool = Field(default=False, description="Enable background music separation")
|
118 |
+
model_size: str = Field(
|
119 |
+
default="UVR-MDX-NET-Inst_HQ_4",
|
120 |
+
description="UVR model size"
|
121 |
+
)
|
122 |
+
segment_size: int = Field(
|
123 |
+
default=256,
|
124 |
+
gt=0,
|
125 |
+
description="Segment size for UVR model"
|
126 |
+
)
|
127 |
+
save_file: bool = Field(
|
128 |
+
default=False,
|
129 |
+
description="Whether to save separated audio files"
|
130 |
+
)
|
131 |
+
enable_offload: bool = Field(
|
132 |
+
default=True,
|
133 |
+
description="Offload UVR model after transcription"
|
134 |
+
)
|
135 |
|
136 |
+
def to_dict(self) -> Dict:
|
137 |
+
return self.model_dump()
|
|
|
138 |
|
139 |
+
@classmethod
|
140 |
+
def to_gradio_input(cls,
|
141 |
+
defaults: Optional[Dict] = None,
|
142 |
+
available_devices: Optional[List] = None,
|
143 |
+
device: Optional[str] = None,
|
144 |
+
available_models: Optional[List] = None) -> List[gr.components.base.FormComponent]:
|
145 |
+
defaults = defaults or {}
|
146 |
+
return [
|
147 |
+
gr.Checkbox(
|
148 |
+
label=_("Enable Background Music Remover Filter"),
|
149 |
+
value=defaults.get("is_separate_bgm", cls.is_separate_bgm),
|
150 |
+
interactive=True,
|
151 |
+
info=_("Enabling this will remove background music")
|
152 |
+
),
|
153 |
+
gr.Dropdown(
|
154 |
+
label=_("Device"),
|
155 |
+
choices=["cpu", "cuda"] if available_devices is None else available_devices,
|
156 |
+
value="cuda" if device is None else device,
|
157 |
+
info=_("Device to run UVR model")
|
158 |
+
),
|
159 |
+
gr.Dropdown(
|
160 |
+
label=_("Model"),
|
161 |
+
choices=["UVR-MDX-NET-Inst_HQ_4", "UVR-MDX-NET-Inst_3"] if available_models is None else available_models,
|
162 |
+
value=defaults.get("model_size", cls.model_size),
|
163 |
+
info=_("UVR model size")
|
164 |
+
),
|
165 |
+
gr.Number(
|
166 |
+
label="Segment Size",
|
167 |
+
value=defaults.get("segment_size", cls.segment_size),
|
168 |
+
precision=0,
|
169 |
+
info="Segment size for UVR model"
|
170 |
+
),
|
171 |
+
gr.Checkbox(
|
172 |
+
label=_("Save separated files to output"),
|
173 |
+
value=defaults.get("save_file", cls.save_file),
|
174 |
+
info=_("Whether to save separated audio files")
|
175 |
+
),
|
176 |
+
gr.Checkbox(
|
177 |
+
label=_("Offload sub model after removing background music"),
|
178 |
+
value=defaults.get("enable_offload", cls.enable_offload),
|
179 |
+
info=_("Offload UVR model after transcription")
|
180 |
+
)
|
181 |
+
]
|
182 |
|
|
|
|
|
183 |
|
184 |
+
class WhisperParams(BaseModel):
|
185 |
+
"""Whisper parameters"""
|
186 |
+
model_size: str = Field(default="large-v2", description="Whisper model size")
|
187 |
+
lang: Optional[str] = Field(default=None, description="Source language of the file to transcribe")
|
188 |
+
is_translate: bool = Field(default=False, description="Translate speech to English end-to-end")
|
189 |
+
beam_size: int = Field(default=5, ge=1, description="Beam size for decoding")
|
190 |
+
log_prob_threshold: float = Field(
|
191 |
+
default=-1.0,
|
192 |
+
description="Threshold for average log probability of sampled tokens"
|
193 |
+
)
|
194 |
+
no_speech_threshold: float = Field(
|
195 |
+
default=0.6,
|
196 |
+
ge=0.0,
|
197 |
+
le=1.0,
|
198 |
+
description="Threshold for detecting silence"
|
199 |
+
)
|
200 |
+
compute_type: str = Field(default="float16", description="Computation type for transcription")
|
201 |
+
best_of: int = Field(default=5, ge=1, description="Number of candidates when sampling")
|
202 |
+
patience: float = Field(default=1.0, gt=0, description="Beam search patience factor")
|
203 |
+
condition_on_previous_text: bool = Field(
|
204 |
+
default=True,
|
205 |
+
description="Use previous output as prompt for next window"
|
206 |
+
)
|
207 |
+
prompt_reset_on_temperature: float = Field(
|
208 |
+
default=0.5,
|
209 |
+
ge=0.0,
|
210 |
+
le=1.0,
|
211 |
+
description="Temperature threshold for resetting prompt"
|
212 |
+
)
|
213 |
+
initial_prompt: Optional[str] = Field(default=None, description="Initial prompt for first window")
|
214 |
+
temperature: float = Field(
|
215 |
+
default=0.0,
|
216 |
+
ge=0.0,
|
217 |
+
description="Temperature for sampling"
|
218 |
+
)
|
219 |
+
compression_ratio_threshold: float = Field(
|
220 |
+
default=2.4,
|
221 |
+
gt=0,
|
222 |
+
description="Threshold for gzip compression ratio"
|
223 |
+
)
|
224 |
+
batch_size: int = Field(default=24, gt=0, description="Batch size for processing")
|
225 |
+
length_penalty: float = Field(default=1.0, gt=0, description="Exponential length penalty")
|
226 |
+
repetition_penalty: float = Field(default=1.0, gt=0, description="Penalty for repeated tokens")
|
227 |
+
no_repeat_ngram_size: int = Field(default=0, ge=0, description="Size of n-grams to prevent repetition")
|
228 |
+
prefix: Optional[str] = Field(default=None, description="Prefix text for first window")
|
229 |
+
suppress_blank: bool = Field(
|
230 |
+
default=True,
|
231 |
+
description="Suppress blank outputs at start of sampling"
|
232 |
+
)
|
233 |
+
suppress_tokens: Optional[str] = Field(default="[-1]", description="Token IDs to suppress")
|
234 |
+
max_initial_timestamp: float = Field(
|
235 |
+
default=0.0,
|
236 |
+
ge=0.0,
|
237 |
+
description="Maximum initial timestamp"
|
238 |
+
)
|
239 |
+
word_timestamps: bool = Field(default=False, description="Extract word-level timestamps")
|
240 |
+
prepend_punctuations: Optional[str] = Field(
|
241 |
+
default="\"'“¿([{-",
|
242 |
+
description="Punctuations to merge with next word"
|
243 |
+
)
|
244 |
+
append_punctuations: Optional[str] = Field(
|
245 |
+
default="\"'.。,,!!??::”)]}、",
|
246 |
+
description="Punctuations to merge with previous word"
|
247 |
+
)
|
248 |
+
max_new_tokens: Optional[int] = Field(default=None, description="Maximum number of new tokens per chunk")
|
249 |
+
chunk_length: Optional[int] = Field(default=30, description="Length of audio segments in seconds")
|
250 |
+
hallucination_silence_threshold: Optional[float] = Field(
|
251 |
+
default=None,
|
252 |
+
description="Threshold for skipping silent periods in hallucination detection"
|
253 |
+
)
|
254 |
+
hotwords: Optional[str] = Field(default=None, description="Hotwords/hint phrases for the model")
|
255 |
+
language_detection_threshold: Optional[float] = Field(
|
256 |
+
default=None,
|
257 |
+
description="Threshold for language detection probability"
|
258 |
+
)
|
259 |
+
language_detection_segments: int = Field(
|
260 |
+
default=1,
|
261 |
+
gt=0,
|
262 |
+
description="Number of segments for language detection"
|
263 |
+
)
|
264 |
|
265 |
+
def to_dict(self):
|
266 |
+
return self.model_dump()
|
|
|
|
|
267 |
|
268 |
+
@field_validator('lang')
|
269 |
+
def validate_lang(cls, v):
|
270 |
+
from modules.utils.constants import AUTOMATIC_DETECTION
|
271 |
+
return None if v == AUTOMATIC_DETECTION.unwrap() else v
|
|
|
272 |
|
273 |
+
@classmethod
|
274 |
+
def to_gradio_inputs(cls,
|
275 |
+
defaults: Optional[Dict] = None,
|
276 |
+
only_advanced: Optional[bool] = True,
|
277 |
+
whisper_type: Optional[WhisperImpl] = None):
|
278 |
+
defaults = {} if defaults is None else defaults
|
279 |
+
whisper_type = WhisperImpl.FASTER_WHISPER if whisper_type is None else whisper_type
|
280 |
|
281 |
+
inputs = []
|
282 |
+
if not only_advanced:
|
283 |
+
inputs += [
|
284 |
+
gr.Dropdown(
|
285 |
+
label="Model Size",
|
286 |
+
choices=["small", "medium", "large-v2"],
|
287 |
+
value=defaults.get("model_size", cls.model_size),
|
288 |
+
info="Whisper model size"
|
289 |
+
),
|
290 |
+
gr.Textbox(
|
291 |
+
label="Language",
|
292 |
+
value=defaults.get("lang", cls.lang),
|
293 |
+
info="Source language of the file to transcribe"
|
294 |
+
),
|
295 |
+
gr.Checkbox(
|
296 |
+
label="Translate to English",
|
297 |
+
value=defaults.get("is_translate", cls.is_translate),
|
298 |
+
info="Translate speech to English end-to-end"
|
299 |
+
),
|
300 |
+
]
|
301 |
|
302 |
+
inputs += [
|
303 |
+
gr.Number(
|
304 |
+
label="Beam Size",
|
305 |
+
value=defaults.get("beam_size", cls.beam_size),
|
306 |
+
precision=0,
|
307 |
+
info="Beam size for decoding"
|
308 |
+
),
|
309 |
+
gr.Number(
|
310 |
+
label="Log Probability Threshold",
|
311 |
+
value=defaults.get("log_prob_threshold", cls.log_prob_threshold),
|
312 |
+
info="Threshold for average log probability of sampled tokens"
|
313 |
+
),
|
314 |
+
gr.Number(
|
315 |
+
label="No Speech Threshold",
|
316 |
+
value=defaults.get("no_speech_threshold", cls.no_speech_threshold),
|
317 |
+
info="Threshold for detecting silence"
|
318 |
+
),
|
319 |
+
gr.Dropdown(
|
320 |
+
label="Compute Type",
|
321 |
+
choices=["float16", "int8", "int16"],
|
322 |
+
value=defaults.get("compute_type", cls.compute_type),
|
323 |
+
info="Computation type for transcription"
|
324 |
+
),
|
325 |
+
gr.Number(
|
326 |
+
label="Best Of",
|
327 |
+
value=defaults.get("best_of", cls.best_of),
|
328 |
+
precision=0,
|
329 |
+
info="Number of candidates when sampling"
|
330 |
+
),
|
331 |
+
gr.Number(
|
332 |
+
label="Patience",
|
333 |
+
value=defaults.get("patience", cls.patience),
|
334 |
+
info="Beam search patience factor"
|
335 |
+
),
|
336 |
+
gr.Checkbox(
|
337 |
+
label="Condition On Previous Text",
|
338 |
+
value=defaults.get("condition_on_previous_text", cls.condition_on_previous_text),
|
339 |
+
info="Use previous output as prompt for next window"
|
340 |
+
),
|
341 |
+
gr.Slider(
|
342 |
+
label="Prompt Reset On Temperature",
|
343 |
+
value=defaults.get("prompt_reset_on_temperature", cls.prompt_reset_on_temperature),
|
344 |
+
minimum=0,
|
345 |
+
maximum=1,
|
346 |
+
step=0.01,
|
347 |
+
info="Temperature threshold for resetting prompt"
|
348 |
+
),
|
349 |
+
gr.Textbox(
|
350 |
+
label="Initial Prompt",
|
351 |
+
value=defaults.get("initial_prompt", cls.initial_prompt),
|
352 |
+
info="Initial prompt for first window"
|
353 |
+
),
|
354 |
+
gr.Slider(
|
355 |
+
label="Temperature",
|
356 |
+
value=defaults.get("temperature", cls.temperature),
|
357 |
+
minimum=0.0,
|
358 |
+
step=0.01,
|
359 |
+
maximum=1.0,
|
360 |
+
info="Temperature for sampling"
|
361 |
+
),
|
362 |
+
gr.Number(
|
363 |
+
label="Compression Ratio Threshold",
|
364 |
+
value=defaults.get("compression_ratio_threshold", cls.compression_ratio_threshold),
|
365 |
+
info="Threshold for gzip compression ratio"
|
366 |
+
)
|
367 |
+
]
|
368 |
+
if whisper_type == WhisperImpl.FASTER_WHISPER:
|
369 |
+
inputs += [
|
370 |
+
gr.Number(
|
371 |
+
label="Length Penalty",
|
372 |
+
value=defaults.get("length_penalty", cls.length_penalty),
|
373 |
+
info="Exponential length penalty",
|
374 |
+
visible=whisper_type=="faster_whisper"
|
375 |
+
),
|
376 |
+
gr.Number(
|
377 |
+
label="Repetition Penalty",
|
378 |
+
value=defaults.get("repetition_penalty", cls.repetition_penalty),
|
379 |
+
info="Penalty for repeated tokens"
|
380 |
+
),
|
381 |
+
gr.Number(
|
382 |
+
label="No Repeat N-gram Size",
|
383 |
+
value=defaults.get("no_repeat_ngram_size", cls.no_repeat_ngram_size),
|
384 |
+
precision=0,
|
385 |
+
info="Size of n-grams to prevent repetition"
|
386 |
+
),
|
387 |
+
gr.Textbox(
|
388 |
+
label="Prefix",
|
389 |
+
value=defaults.get("prefix", cls.prefix),
|
390 |
+
info="Prefix text for first window"
|
391 |
+
),
|
392 |
+
gr.Checkbox(
|
393 |
+
label="Suppress Blank",
|
394 |
+
value=defaults.get("suppress_blank", cls.suppress_blank),
|
395 |
+
info="Suppress blank outputs at start of sampling"
|
396 |
+
),
|
397 |
+
gr.Textbox(
|
398 |
+
label="Suppress Tokens",
|
399 |
+
value=defaults.get("suppress_tokens", cls.suppress_tokens),
|
400 |
+
info="Token IDs to suppress"
|
401 |
+
),
|
402 |
+
gr.Number(
|
403 |
+
label="Max Initial Timestamp",
|
404 |
+
value=defaults.get("max_initial_timestamp", cls.max_initial_timestamp),
|
405 |
+
info="Maximum initial timestamp"
|
406 |
+
),
|
407 |
+
gr.Checkbox(
|
408 |
+
label="Word Timestamps",
|
409 |
+
value=defaults.get("word_timestamps", cls.word_timestamps),
|
410 |
+
info="Extract word-level timestamps"
|
411 |
+
),
|
412 |
+
gr.Textbox(
|
413 |
+
label="Prepend Punctuations",
|
414 |
+
value=defaults.get("prepend_punctuations", cls.prepend_punctuations),
|
415 |
+
info="Punctuations to merge with next word"
|
416 |
+
),
|
417 |
+
gr.Textbox(
|
418 |
+
label="Append Punctuations",
|
419 |
+
value=defaults.get("append_punctuations", cls.append_punctuations),
|
420 |
+
info="Punctuations to merge with previous word"
|
421 |
+
),
|
422 |
+
gr.Number(
|
423 |
+
label="Max New Tokens",
|
424 |
+
value=defaults.get("max_new_tokens", cls.max_new_tokens),
|
425 |
+
precision=0,
|
426 |
+
info="Maximum number of new tokens per chunk"
|
427 |
+
),
|
428 |
+
gr.Number(
|
429 |
+
label="Chunk Length (s)",
|
430 |
+
value=defaults.get("chunk_length", cls.chunk_length),
|
431 |
+
precision=0,
|
432 |
+
info="Length of audio segments in seconds"
|
433 |
+
),
|
434 |
+
gr.Number(
|
435 |
+
label="Hallucination Silence Threshold (sec)",
|
436 |
+
value=defaults.get("hallucination_silence_threshold", cls.hallucination_silence_threshold),
|
437 |
+
info="Threshold for skipping silent periods in hallucination detection"
|
438 |
+
),
|
439 |
+
gr.Textbox(
|
440 |
+
label="Hotwords",
|
441 |
+
value=defaults.get("hotwords", cls.hotwords),
|
442 |
+
info="Hotwords/hint phrases for the model"
|
443 |
+
),
|
444 |
+
gr.Number(
|
445 |
+
label="Language Detection Threshold",
|
446 |
+
value=defaults.get("language_detection_threshold", cls.language_detection_threshold),
|
447 |
+
info="Threshold for language detection probability"
|
448 |
+
),
|
449 |
+
gr.Number(
|
450 |
+
label="Language Detection Segments",
|
451 |
+
value=defaults.get("language_detection_segments", cls.language_detection_segments),
|
452 |
+
precision=0,
|
453 |
+
info="Number of segments for language detection"
|
454 |
+
)
|
455 |
+
]
|
456 |
|
457 |
+
if whisper_type == WhisperImpl.INSANELY_FAST_WHISPER:
|
458 |
+
inputs += [
|
459 |
+
gr.Number(
|
460 |
+
label="Batch Size",
|
461 |
+
value=defaults.get("batch_size", cls.batch_size),
|
462 |
+
precision=0,
|
463 |
+
info="Batch size for processing",
|
464 |
+
visible=whisper_type == "insanely_fast_whisper"
|
465 |
+
)
|
466 |
+
]
|
467 |
+
return inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
+
|
470 |
+
class TranscriptionPipelineParams(BaseModel):
|
471 |
+
"""Transcription pipeline parameters"""
|
472 |
+
whisper: WhisperParams = Field(default_factory=WhisperParams)
|
473 |
+
vad: VadParams = Field(default_factory=VadParams)
|
474 |
+
diarization: DiarizationParams = Field(default_factory=DiarizationParams)
|
475 |
+
bgm_separation: BGMSeparationParams = Field(default_factory=BGMSeparationParams)
|
476 |
+
|
477 |
+
def to_dict(self) -> Dict:
|
478 |
data = {
|
479 |
+
"whisper": self.whisper.to_dict(),
|
480 |
+
"vad": self.vad.to_dict(),
|
481 |
+
"diarization": self.diarization.to_dict(),
|
482 |
+
"bgm_separation": self.bgm_separation.to_dict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
}
|
484 |
return data
|
485 |
|
486 |
+
# def as_list(self) -> list:
|
487 |
+
# """
|
488 |
+
# Converts the data class attributes into a list
|
489 |
+
#
|
490 |
+
# Returns
|
491 |
+
# ----------
|
492 |
+
# A list of Whisper parameters
|
493 |
+
# """
|
494 |
+
# return [getattr(self, f.name) for f in fields(self)]
|