Spaces:
Running
Running
jhj0517
commited on
Commit
·
960f111
1
Parent(s):
f4609a6
refactoring
Browse files- modules/whisper_Inference.py +148 -97
modules/whisper_Inference.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
import whisper
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
from datetime import datetime
|
|
|
|
| 5 |
|
| 6 |
from .base_interface import BaseInterface
|
| 7 |
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
|
@@ -48,61 +52,45 @@ class WhisperInference(BaseInterface):
|
|
| 48 |
Indicator to show progress directly in gradio.
|
| 49 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 50 |
"""
|
| 51 |
-
def progress_callback(progress_value):
|
| 52 |
-
progress(progress_value, desc="Transcribing..")
|
| 53 |
|
| 54 |
try:
|
| 55 |
if model_size != self.current_model_size or self.model is None:
|
| 56 |
-
|
| 57 |
-
self.current_model_size = model_size
|
| 58 |
-
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 59 |
-
|
| 60 |
-
if lang == "Automatic Detection":
|
| 61 |
-
lang = None
|
| 62 |
-
|
| 63 |
-
progress(0, desc="Loading Audio..")
|
| 64 |
|
| 65 |
files_info = {}
|
| 66 |
for fileobj in fileobjs:
|
| 67 |
-
|
| 68 |
audio = whisper.load_audio(fileobj.name)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
else:
|
| 75 |
-
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
| 76 |
-
progress_callback=progress_callback)
|
| 77 |
-
|
| 78 |
progress(1, desc="Completed!")
|
| 79 |
|
| 80 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 81 |
file_name = safe_filename(file_name)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
-
subtitle = get_srt(result["segments"])
|
| 90 |
-
write_file(subtitle, f"{output_path}.srt")
|
| 91 |
-
elif subformat == "WebVTT":
|
| 92 |
-
subtitle = get_vtt(result["segments"])
|
| 93 |
-
write_file(subtitle, f"{output_path}.vtt")
|
| 94 |
-
|
| 95 |
-
files_info[file_name] = subtitle
|
| 96 |
|
| 97 |
total_result = ''
|
| 98 |
-
|
|
|
|
| 99 |
total_result += '------------------------------------\n'
|
| 100 |
total_result += f'{file_name}\n\n'
|
| 101 |
-
total_result += f'
|
|
|
|
| 102 |
|
| 103 |
-
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
| 104 |
except Exception as e:
|
| 105 |
-
|
|
|
|
| 106 |
finally:
|
| 107 |
self.release_cuda_memory()
|
| 108 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
@@ -137,49 +125,32 @@ class WhisperInference(BaseInterface):
|
|
| 137 |
Indicator to show progress directly in gradio.
|
| 138 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 139 |
"""
|
| 140 |
-
def progress_callback(progress_value):
|
| 141 |
-
progress(progress_value, desc="Transcribing..")
|
| 142 |
-
|
| 143 |
try:
|
| 144 |
if model_size != self.current_model_size or self.model is None:
|
| 145 |
-
|
| 146 |
-
self.current_model_size = model_size
|
| 147 |
-
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 148 |
-
|
| 149 |
-
if lang == "Automatic Detection":
|
| 150 |
-
lang = None
|
| 151 |
|
| 152 |
progress(0, desc="Loading Audio from Youtube..")
|
| 153 |
yt = get_ytdata(youtubelink)
|
| 154 |
audio = whisper.load_audio(get_ytaudio(yt))
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
else:
|
| 161 |
-
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
| 162 |
-
progress_callback=progress_callback)
|
| 163 |
-
|
| 164 |
progress(1, desc="Completed!")
|
| 165 |
|
| 166 |
file_name = safe_filename(yt.title)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
write_file(subtitle, f"{output_path}.srt")
|
| 176 |
-
elif subformat == "WebVTT":
|
| 177 |
-
subtitle = get_vtt(result["segments"])
|
| 178 |
-
write_file(subtitle, f"{output_path}.vtt")
|
| 179 |
-
|
| 180 |
-
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 181 |
except Exception as e:
|
| 182 |
-
|
|
|
|
| 183 |
finally:
|
| 184 |
yt = get_ytdata(youtubelink)
|
| 185 |
file_path = get_ytaudio(yt)
|
|
@@ -213,43 +184,123 @@ class WhisperInference(BaseInterface):
|
|
| 213 |
Indicator to show progress directly in gradio.
|
| 214 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 215 |
"""
|
| 216 |
-
def progress_callback(progress_value):
|
| 217 |
-
progress(progress_value, desc="Transcribing..")
|
| 218 |
|
| 219 |
try:
|
| 220 |
if model_size != self.current_model_size or self.model is None:
|
| 221 |
-
|
| 222 |
-
self.current_model_size = model_size
|
| 223 |
-
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 224 |
-
|
| 225 |
-
if lang == "Automatic Detection":
|
| 226 |
-
lang = None
|
| 227 |
-
|
| 228 |
-
progress(0, desc="Loading Audio..")
|
| 229 |
-
|
| 230 |
-
translatable_model = ["large", "large-v1", "large-v2"]
|
| 231 |
-
if istranslate and self.current_model_size in translatable_model:
|
| 232 |
-
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
|
| 233 |
-
progress_callback=progress_callback)
|
| 234 |
-
else:
|
| 235 |
-
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
|
| 236 |
-
progress_callback=progress_callback)
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
progress(1, desc="Completed!")
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
-
|
| 244 |
-
subtitle = get_srt(result["segments"])
|
| 245 |
-
write_file(subtitle, f"{output_path}.srt")
|
| 246 |
-
elif subformat == "WebVTT":
|
| 247 |
-
subtitle = get_vtt(result["segments"])
|
| 248 |
-
write_file(subtitle, f"{output_path}.vtt")
|
| 249 |
-
|
| 250 |
-
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 251 |
except Exception as e:
|
| 252 |
-
|
|
|
|
| 253 |
finally:
|
| 254 |
self.release_cuda_memory()
|
| 255 |
self.remove_input_files([micaudio])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import whisper
|
| 2 |
import gradio as gr
|
| 3 |
+
import time
|
| 4 |
import os
|
| 5 |
+
from typing import BinaryIO, Union, Tuple
|
| 6 |
+
import numpy as np
|
| 7 |
from datetime import datetime
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
from .base_interface import BaseInterface
|
| 11 |
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
|
|
|
| 52 |
Indicator to show progress directly in gradio.
|
| 53 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 54 |
"""
|
|
|
|
|
|
|
| 55 |
|
| 56 |
try:
|
| 57 |
if model_size != self.current_model_size or self.model is None:
|
| 58 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
files_info = {}
|
| 61 |
for fileobj in fileobjs:
|
| 62 |
+
progress(0, desc="Loading Audio..")
|
| 63 |
audio = whisper.load_audio(fileobj.name)
|
| 64 |
|
| 65 |
+
result, elapsed_time = self.transcribe(audio=audio,
|
| 66 |
+
lang=lang,
|
| 67 |
+
istranslate=istranslate,
|
| 68 |
+
progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
progress(1, desc="Completed!")
|
| 70 |
|
| 71 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 72 |
file_name = safe_filename(file_name)
|
| 73 |
+
subtitle = self.generate_and_write_subtitle(
|
| 74 |
+
file_name=file_name,
|
| 75 |
+
transcribed_segments=result,
|
| 76 |
+
add_timestamp=add_timestamp,
|
| 77 |
+
subformat=subformat
|
| 78 |
+
)
|
| 79 |
|
| 80 |
+
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
total_result = ''
|
| 83 |
+
total_time = 0
|
| 84 |
+
for file_name, info in files_info.items():
|
| 85 |
total_result += '------------------------------------\n'
|
| 86 |
total_result += f'{file_name}\n\n'
|
| 87 |
+
total_result += f"{info['subtitle']}"
|
| 88 |
+
total_time += info["elapsed_time"]
|
| 89 |
|
| 90 |
+
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
| 91 |
except Exception as e:
|
| 92 |
+
print(f"Error transcribing file: {str(e)}")
|
| 93 |
+
return f"Error transcribing file: {str(e)}"
|
| 94 |
finally:
|
| 95 |
self.release_cuda_memory()
|
| 96 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
|
|
| 125 |
Indicator to show progress directly in gradio.
|
| 126 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 127 |
"""
|
|
|
|
|
|
|
|
|
|
| 128 |
try:
|
| 129 |
if model_size != self.current_model_size or self.model is None:
|
| 130 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
progress(0, desc="Loading Audio from Youtube..")
|
| 133 |
yt = get_ytdata(youtubelink)
|
| 134 |
audio = whisper.load_audio(get_ytaudio(yt))
|
| 135 |
|
| 136 |
+
result, elapsed_time = self.transcribe(audio=audio,
|
| 137 |
+
lang=lang,
|
| 138 |
+
istranslate=istranslate,
|
| 139 |
+
progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
progress(1, desc="Completed!")
|
| 141 |
|
| 142 |
file_name = safe_filename(yt.title)
|
| 143 |
+
subtitle = self.generate_and_write_subtitle(
|
| 144 |
+
file_name=file_name,
|
| 145 |
+
transcribed_segments=result,
|
| 146 |
+
add_timestamp=add_timestamp,
|
| 147 |
+
subformat=subformat
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
except Exception as e:
|
| 152 |
+
print(f"Error transcribing youtube video: {str(e)}")
|
| 153 |
+
return f"Error transcribing youtube video: {str(e)}"
|
| 154 |
finally:
|
| 155 |
yt = get_ytdata(youtubelink)
|
| 156 |
file_path = get_ytaudio(yt)
|
|
|
|
| 184 |
Indicator to show progress directly in gradio.
|
| 185 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
| 186 |
"""
|
|
|
|
|
|
|
| 187 |
|
| 188 |
try:
|
| 189 |
if model_size != self.current_model_size or self.model is None:
|
| 190 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
result, elapsed_time = self.transcribe(audio=micaudio,
|
| 193 |
+
lang=lang,
|
| 194 |
+
istranslate=istranslate,
|
| 195 |
+
progress=progress)
|
| 196 |
progress(1, desc="Completed!")
|
| 197 |
|
| 198 |
+
subtitle = self.generate_and_write_subtitle(
|
| 199 |
+
file_name="Mic",
|
| 200 |
+
transcribed_segments=result,
|
| 201 |
+
add_timestamp=True,
|
| 202 |
+
subformat=subformat
|
| 203 |
+
)
|
| 204 |
|
| 205 |
+
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
except Exception as e:
|
| 207 |
+
print(f"Error transcribing mic: {str(e)}")
|
| 208 |
+
return f"Error transcribing mic: {str(e)}"
|
| 209 |
finally:
|
| 210 |
self.release_cuda_memory()
|
| 211 |
self.remove_input_files([micaudio])
|
| 212 |
+
|
| 213 |
+
def transcribe(self,
|
| 214 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
| 215 |
+
lang: str,
|
| 216 |
+
istranslate: bool,
|
| 217 |
+
progress: gr.Progress
|
| 218 |
+
) -> Tuple[list[dict], float]:
|
| 219 |
+
"""
|
| 220 |
+
transcribe method for OpenAI's Whisper implementation.
|
| 221 |
+
|
| 222 |
+
Parameters
|
| 223 |
+
----------
|
| 224 |
+
audio: Union[str, BinaryIO, torch.Tensor]
|
| 225 |
+
Audio path or file binary or Audio numpy array
|
| 226 |
+
lang: str
|
| 227 |
+
Source language of the file to transcribe from gr.Dropdown()
|
| 228 |
+
istranslate: bool
|
| 229 |
+
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 230 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 231 |
+
progress: gr.Progress
|
| 232 |
+
Indicator to show progress directly in gradio.
|
| 233 |
+
|
| 234 |
+
Returns
|
| 235 |
+
----------
|
| 236 |
+
segments_result: list[dict]
|
| 237 |
+
list of dicts that includes start, end timestamps and transcribed text
|
| 238 |
+
elapsed_time: float
|
| 239 |
+
elapsed time for transcription
|
| 240 |
+
"""
|
| 241 |
+
start_time = time.time()
|
| 242 |
+
|
| 243 |
+
def progress_callback(progress_value):
|
| 244 |
+
progress(progress_value, desc="Transcribing..")
|
| 245 |
+
|
| 246 |
+
if lang == "Automatic Detection":
|
| 247 |
+
lang = None
|
| 248 |
+
|
| 249 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
| 250 |
+
segments_result = self.model.transcribe(audio=audio,
|
| 251 |
+
language=lang,
|
| 252 |
+
verbose=False,
|
| 253 |
+
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
| 254 |
+
progress_callback=progress_callback)["segments"]
|
| 255 |
+
elapsed_time = time.time() - start_time
|
| 256 |
+
|
| 257 |
+
return segments_result, elapsed_time
|
| 258 |
+
|
| 259 |
+
def initialize_model(self,
|
| 260 |
+
model_size: str,
|
| 261 |
+
progress: gr.Progress
|
| 262 |
+
):
|
| 263 |
+
"""
|
| 264 |
+
Initialize model if it doesn't match with current model size
|
| 265 |
+
"""
|
| 266 |
+
progress(0, desc="Initializing Model..")
|
| 267 |
+
self.current_model_size = model_size
|
| 268 |
+
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 269 |
+
|
| 270 |
+
@staticmethod
|
| 271 |
+
def generate_and_write_subtitle(file_name: str,
|
| 272 |
+
transcribed_segments: list,
|
| 273 |
+
add_timestamp: bool,
|
| 274 |
+
subformat: str,
|
| 275 |
+
) -> str:
|
| 276 |
+
"""
|
| 277 |
+
This method writes subtitle file and returns str to gr.Textbox
|
| 278 |
+
"""
|
| 279 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 280 |
+
if add_timestamp:
|
| 281 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
| 282 |
+
else:
|
| 283 |
+
output_path = os.path.join("outputs", f"{file_name}")
|
| 284 |
+
|
| 285 |
+
if subformat == "SRT":
|
| 286 |
+
subtitle = get_srt(transcribed_segments)
|
| 287 |
+
write_file(subtitle, f"{output_path}.srt")
|
| 288 |
+
elif subformat == "WebVTT":
|
| 289 |
+
subtitle = get_vtt(transcribed_segments)
|
| 290 |
+
write_file(subtitle, f"{output_path}.vtt")
|
| 291 |
+
return subtitle
|
| 292 |
+
|
| 293 |
+
@staticmethod
|
| 294 |
+
def format_time(elapsed_time: float) -> str:
|
| 295 |
+
hours, rem = divmod(elapsed_time, 3600)
|
| 296 |
+
minutes, seconds = divmod(rem, 60)
|
| 297 |
+
|
| 298 |
+
time_str = ""
|
| 299 |
+
if hours:
|
| 300 |
+
time_str += f"{hours} hours "
|
| 301 |
+
if minutes:
|
| 302 |
+
time_str += f"{minutes} minutes "
|
| 303 |
+
seconds = round(seconds)
|
| 304 |
+
time_str += f"{seconds} seconds"
|
| 305 |
+
|
| 306 |
+
return time_str.strip()
|