Spaces:
Running
Running
jhj0517
commited on
Commit
·
83a3dff
1
Parent(s):
e2a71c1
add advanced parameter tab
Browse files- app.py +21 -3
- modules/faster_whisper_inference.py +72 -6
- modules/whisper_Inference.py +71 -5
app.py
CHANGED
|
@@ -54,14 +54,20 @@ class App:
|
|
| 54 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 55 |
with gr.Row():
|
| 56 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
with gr.Row():
|
| 58 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 59 |
with gr.Row():
|
| 60 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 61 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 62 |
|
|
|
|
|
|
|
| 63 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 64 |
-
inputs=
|
| 65 |
outputs=[tb_indicator])
|
| 66 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 67 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
@@ -86,14 +92,20 @@ class App:
|
|
| 86 |
with gr.Row():
|
| 87 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
| 88 |
interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with gr.Row():
|
| 90 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 91 |
with gr.Row():
|
| 92 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 93 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 94 |
|
|
|
|
|
|
|
| 95 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 96 |
-
inputs=
|
| 97 |
outputs=[tb_indicator])
|
| 98 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
| 99 |
outputs=[img_thumbnail, tb_title, tb_description])
|
|
@@ -111,14 +123,20 @@ class App:
|
|
| 111 |
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
|
| 112 |
with gr.Row():
|
| 113 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
with gr.Row():
|
| 115 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 116 |
with gr.Row():
|
| 117 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 118 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 119 |
|
|
|
|
|
|
|
| 120 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 121 |
-
inputs=
|
| 122 |
outputs=[tb_indicator])
|
| 123 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 124 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
|
| 54 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 55 |
with gr.Row():
|
| 56 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
|
| 57 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
| 58 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 59 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
| 60 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 61 |
with gr.Row():
|
| 62 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 63 |
with gr.Row():
|
| 64 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 65 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 66 |
|
| 67 |
+
params = [input_file, dd_model, dd_lang, dd_subformat, cb_translate, cb_timestamp]
|
| 68 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
| 69 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 70 |
+
inputs=params + advanced_params,
|
| 71 |
outputs=[tb_indicator])
|
| 72 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 73 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
|
| 92 |
with gr.Row():
|
| 93 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
| 94 |
interactive=True)
|
| 95 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
| 96 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 97 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
| 98 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 99 |
with gr.Row():
|
| 100 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 101 |
with gr.Row():
|
| 102 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 103 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 104 |
|
| 105 |
+
params = [tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate, cb_timestamp]
|
| 106 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
| 107 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 108 |
+
inputs=params + advanced_params,
|
| 109 |
outputs=[tb_indicator])
|
| 110 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
| 111 |
outputs=[img_thumbnail, tb_title, tb_description])
|
|
|
|
| 123 |
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
|
| 124 |
with gr.Row():
|
| 125 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 126 |
+
with gr.Accordion("Advanced_Parameters", open=False):
|
| 127 |
+
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 128 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
|
| 129 |
+
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 130 |
with gr.Row():
|
| 131 |
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
|
| 132 |
with gr.Row():
|
| 133 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 134 |
btn_openfolder = gr.Button('📂', scale=2)
|
| 135 |
|
| 136 |
+
params = [mic_input, dd_model, dd_lang, dd_subformat, cb_translate]
|
| 137 |
+
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold]
|
| 138 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 139 |
+
inputs=params + advanced_params,
|
| 140 |
outputs=[tb_indicator])
|
| 141 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 142 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
modules/faster_whisper_inference.py
CHANGED
|
@@ -34,6 +34,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 34 |
subformat: str,
|
| 35 |
istranslate: bool,
|
| 36 |
add_timestamp: bool,
|
|
|
|
|
|
|
|
|
|
| 37 |
progress=gr.Progress()
|
| 38 |
) -> str:
|
| 39 |
"""
|
|
@@ -54,6 +57,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 54 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 55 |
add_timestamp: bool
|
| 56 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
progress: gr.Progress
|
| 58 |
Indicator to show progress directly in gradio.
|
| 59 |
|
|
@@ -74,6 +86,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 74 |
audio=fileobj.name,
|
| 75 |
lang=lang,
|
| 76 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 77 |
progress=progress
|
| 78 |
)
|
| 79 |
|
|
@@ -110,6 +125,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 110 |
subformat: str,
|
| 111 |
istranslate: bool,
|
| 112 |
add_timestamp: bool,
|
|
|
|
|
|
|
|
|
|
| 113 |
progress=gr.Progress()
|
| 114 |
) -> str:
|
| 115 |
"""
|
|
@@ -130,6 +148,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 130 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 131 |
add_timestamp: bool
|
| 132 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
progress: gr.Progress
|
| 134 |
Indicator to show progress directly in gradio.
|
| 135 |
|
|
@@ -152,6 +179,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 152 |
audio=audio,
|
| 153 |
lang=lang,
|
| 154 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 155 |
progress=progress
|
| 156 |
)
|
| 157 |
|
|
@@ -168,10 +198,17 @@ class FasterWhisperInference(BaseInterface):
|
|
| 168 |
except Exception as e:
|
| 169 |
return f"Error: {str(e)}"
|
| 170 |
finally:
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
def transcribe_mic(self,
|
| 177 |
micaudio: str,
|
|
@@ -179,6 +216,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 179 |
lang: str,
|
| 180 |
subformat: str,
|
| 181 |
istranslate: bool,
|
|
|
|
|
|
|
|
|
|
| 182 |
progress=gr.Progress()
|
| 183 |
) -> str:
|
| 184 |
"""
|
|
@@ -197,6 +237,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 197 |
istranslate: bool
|
| 198 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 199 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
progress: gr.Progress
|
| 201 |
Indicator to show progress directly in gradio.
|
| 202 |
|
|
@@ -217,6 +266,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 217 |
audio=micaudio,
|
| 218 |
lang=lang,
|
| 219 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 220 |
progress=progress
|
| 221 |
)
|
| 222 |
progress(1, desc="Completed!")
|
|
@@ -238,6 +290,9 @@ class FasterWhisperInference(BaseInterface):
|
|
| 238 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 239 |
lang: str,
|
| 240 |
istranslate: bool,
|
|
|
|
|
|
|
|
|
|
| 241 |
progress: gr.Progress
|
| 242 |
) -> Tuple[list, float]:
|
| 243 |
"""
|
|
@@ -252,6 +307,15 @@ class FasterWhisperInference(BaseInterface):
|
|
| 252 |
istranslate: bool
|
| 253 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 254 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
progress: gr.Progress
|
| 256 |
Indicator to show progress directly in gradio.
|
| 257 |
|
|
@@ -269,8 +333,10 @@ class FasterWhisperInference(BaseInterface):
|
|
| 269 |
segments, info = self.model.transcribe(
|
| 270 |
audio=audio,
|
| 271 |
language=lang,
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
| 274 |
)
|
| 275 |
progress(0, desc="Loading audio..")
|
| 276 |
|
|
|
|
| 34 |
subformat: str,
|
| 35 |
istranslate: bool,
|
| 36 |
add_timestamp: bool,
|
| 37 |
+
beam_size: int,
|
| 38 |
+
log_prob_threshold: float,
|
| 39 |
+
no_speech_threshold: float,
|
| 40 |
progress=gr.Progress()
|
| 41 |
) -> str:
|
| 42 |
"""
|
|
|
|
| 57 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 58 |
add_timestamp: bool
|
| 59 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 60 |
+
beam_size: int
|
| 61 |
+
Int value from gr.Number() that is used for decoding option.
|
| 62 |
+
log_prob_threshold: float
|
| 63 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 64 |
+
below this value, treat as failed.
|
| 65 |
+
no_speech_threshold: float
|
| 66 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 67 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 68 |
+
consider the segment as silent.
|
| 69 |
progress: gr.Progress
|
| 70 |
Indicator to show progress directly in gradio.
|
| 71 |
|
|
|
|
| 86 |
audio=fileobj.name,
|
| 87 |
lang=lang,
|
| 88 |
istranslate=istranslate,
|
| 89 |
+
beam_size=beam_size,
|
| 90 |
+
log_prob_threshold=log_prob_threshold,
|
| 91 |
+
no_speech_threshold=no_speech_threshold,
|
| 92 |
progress=progress
|
| 93 |
)
|
| 94 |
|
|
|
|
| 125 |
subformat: str,
|
| 126 |
istranslate: bool,
|
| 127 |
add_timestamp: bool,
|
| 128 |
+
beam_size: int,
|
| 129 |
+
log_prob_threshold: float,
|
| 130 |
+
no_speech_threshold: float,
|
| 131 |
progress=gr.Progress()
|
| 132 |
) -> str:
|
| 133 |
"""
|
|
|
|
| 148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 149 |
add_timestamp: bool
|
| 150 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 151 |
+
beam_size: int
|
| 152 |
+
Int value from gr.Number() that is used for decoding option.
|
| 153 |
+
log_prob_threshold: float
|
| 154 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 155 |
+
below this value, treat as failed.
|
| 156 |
+
no_speech_threshold: float
|
| 157 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 158 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 159 |
+
consider the segment as silent.
|
| 160 |
progress: gr.Progress
|
| 161 |
Indicator to show progress directly in gradio.
|
| 162 |
|
|
|
|
| 179 |
audio=audio,
|
| 180 |
lang=lang,
|
| 181 |
istranslate=istranslate,
|
| 182 |
+
beam_size=beam_size,
|
| 183 |
+
log_prob_threshold=log_prob_threshold,
|
| 184 |
+
no_speech_threshold=no_speech_threshold,
|
| 185 |
progress=progress
|
| 186 |
)
|
| 187 |
|
|
|
|
| 198 |
except Exception as e:
|
| 199 |
return f"Error: {str(e)}"
|
| 200 |
finally:
|
| 201 |
+
try:
|
| 202 |
+
if 'yt' not in locals():
|
| 203 |
+
yt = get_ytdata(youtubelink)
|
| 204 |
+
file_path = get_ytaudio(yt)
|
| 205 |
+
else:
|
| 206 |
+
file_path = get_ytaudio(yt)
|
| 207 |
+
|
| 208 |
+
self.release_cuda_memory()
|
| 209 |
+
self.remove_input_files([file_path])
|
| 210 |
+
except Exception as cleanup_error:
|
| 211 |
+
pass
|
| 212 |
|
| 213 |
def transcribe_mic(self,
|
| 214 |
micaudio: str,
|
|
|
|
| 216 |
lang: str,
|
| 217 |
subformat: str,
|
| 218 |
istranslate: bool,
|
| 219 |
+
beam_size: int,
|
| 220 |
+
log_prob_threshold: float,
|
| 221 |
+
no_speech_threshold: float,
|
| 222 |
progress=gr.Progress()
|
| 223 |
) -> str:
|
| 224 |
"""
|
|
|
|
| 237 |
istranslate: bool
|
| 238 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 239 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 240 |
+
beam_size: int
|
| 241 |
+
Int value from gr.Number() that is used for decoding option.
|
| 242 |
+
log_prob_threshold: float
|
| 243 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 244 |
+
below this value, treat as failed.
|
| 245 |
+
no_speech_threshold: float
|
| 246 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 247 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 248 |
+
consider the segment as silent.
|
| 249 |
progress: gr.Progress
|
| 250 |
Indicator to show progress directly in gradio.
|
| 251 |
|
|
|
|
| 266 |
audio=micaudio,
|
| 267 |
lang=lang,
|
| 268 |
istranslate=istranslate,
|
| 269 |
+
beam_size=beam_size,
|
| 270 |
+
log_prob_threshold=log_prob_threshold,
|
| 271 |
+
no_speech_threshold=no_speech_threshold,
|
| 272 |
progress=progress
|
| 273 |
)
|
| 274 |
progress(1, desc="Completed!")
|
|
|
|
| 290 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 291 |
lang: str,
|
| 292 |
istranslate: bool,
|
| 293 |
+
beam_size: int,
|
| 294 |
+
log_prob_threshold: float,
|
| 295 |
+
no_speech_threshold: float,
|
| 296 |
progress: gr.Progress
|
| 297 |
) -> Tuple[list, float]:
|
| 298 |
"""
|
|
|
|
| 307 |
istranslate: bool
|
| 308 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 309 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 310 |
+
beam_size: int
|
| 311 |
+
Int value from gr.Number() that is used for decoding option.
|
| 312 |
+
log_prob_threshold: float
|
| 313 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 314 |
+
below this value, treat as failed.
|
| 315 |
+
no_speech_threshold: float
|
| 316 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 317 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 318 |
+
consider the segment as silent.
|
| 319 |
progress: gr.Progress
|
| 320 |
Indicator to show progress directly in gradio.
|
| 321 |
|
|
|
|
| 333 |
segments, info = self.model.transcribe(
|
| 334 |
audio=audio,
|
| 335 |
language=lang,
|
| 336 |
+
task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe",
|
| 337 |
+
beam_size=beam_size,
|
| 338 |
+
log_prob_threshold=log_prob_threshold,
|
| 339 |
+
no_speech_threshold=no_speech_threshold,
|
| 340 |
)
|
| 341 |
progress(0, desc="Loading audio..")
|
| 342 |
|
modules/whisper_Inference.py
CHANGED
|
@@ -30,6 +30,9 @@ class WhisperInference(BaseInterface):
|
|
| 30 |
subformat: str,
|
| 31 |
istranslate: bool,
|
| 32 |
add_timestamp: bool,
|
|
|
|
|
|
|
|
|
|
| 33 |
progress=gr.Progress()):
|
| 34 |
"""
|
| 35 |
Write subtitle file from Files
|
|
@@ -49,6 +52,15 @@ class WhisperInference(BaseInterface):
|
|
| 49 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 50 |
add_timestamp: bool
|
| 51 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
progress: gr.Progress
|
| 53 |
Indicator to show progress directly in gradio.
|
| 54 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
@@ -66,6 +78,9 @@ class WhisperInference(BaseInterface):
|
|
| 66 |
result, elapsed_time = self.transcribe(audio=audio,
|
| 67 |
lang=lang,
|
| 68 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 69 |
progress=progress)
|
| 70 |
progress(1, desc="Completed!")
|
| 71 |
|
|
@@ -103,6 +118,9 @@ class WhisperInference(BaseInterface):
|
|
| 103 |
subformat: str,
|
| 104 |
istranslate: bool,
|
| 105 |
add_timestamp: bool,
|
|
|
|
|
|
|
|
|
|
| 106 |
progress=gr.Progress()):
|
| 107 |
"""
|
| 108 |
Write subtitle file from Youtube
|
|
@@ -122,6 +140,15 @@ class WhisperInference(BaseInterface):
|
|
| 122 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 123 |
add_timestamp: bool
|
| 124 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
progress: gr.Progress
|
| 126 |
Indicator to show progress directly in gradio.
|
| 127 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
@@ -137,6 +164,9 @@ class WhisperInference(BaseInterface):
|
|
| 137 |
result, elapsed_time = self.transcribe(audio=audio,
|
| 138 |
lang=lang,
|
| 139 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 140 |
progress=progress)
|
| 141 |
progress(1, desc="Completed!")
|
| 142 |
|
|
@@ -153,10 +183,17 @@ class WhisperInference(BaseInterface):
|
|
| 153 |
print(f"Error transcribing youtube video: {str(e)}")
|
| 154 |
return f"Error transcribing youtube video: {str(e)}"
|
| 155 |
finally:
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
def transcribe_mic(self,
|
| 162 |
micaudio: str,
|
|
@@ -164,6 +201,9 @@ class WhisperInference(BaseInterface):
|
|
| 164 |
lang: str,
|
| 165 |
subformat: str,
|
| 166 |
istranslate: bool,
|
|
|
|
|
|
|
|
|
|
| 167 |
progress=gr.Progress()):
|
| 168 |
"""
|
| 169 |
Write subtitle file from microphone
|
|
@@ -181,6 +221,15 @@ class WhisperInference(BaseInterface):
|
|
| 181 |
istranslate: bool
|
| 182 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 183 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
progress: gr.Progress
|
| 185 |
Indicator to show progress directly in gradio.
|
| 186 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
@@ -193,6 +242,9 @@ class WhisperInference(BaseInterface):
|
|
| 193 |
result, elapsed_time = self.transcribe(audio=micaudio,
|
| 194 |
lang=lang,
|
| 195 |
istranslate=istranslate,
|
|
|
|
|
|
|
|
|
|
| 196 |
progress=progress)
|
| 197 |
progress(1, desc="Completed!")
|
| 198 |
|
|
@@ -215,6 +267,9 @@ class WhisperInference(BaseInterface):
|
|
| 215 |
audio: Union[str, np.ndarray, torch.Tensor],
|
| 216 |
lang: str,
|
| 217 |
istranslate: bool,
|
|
|
|
|
|
|
|
|
|
| 218 |
progress: gr.Progress
|
| 219 |
) -> Tuple[list[dict], float]:
|
| 220 |
"""
|
|
@@ -229,6 +284,15 @@ class WhisperInference(BaseInterface):
|
|
| 229 |
istranslate: bool
|
| 230 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 231 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
progress: gr.Progress
|
| 233 |
Indicator to show progress directly in gradio.
|
| 234 |
|
|
@@ -251,7 +315,9 @@ class WhisperInference(BaseInterface):
|
|
| 251 |
segments_result = self.model.transcribe(audio=audio,
|
| 252 |
language=lang,
|
| 253 |
verbose=False,
|
| 254 |
-
beam_size=
|
|
|
|
|
|
|
| 255 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
| 256 |
progress_callback=progress_callback)["segments"]
|
| 257 |
elapsed_time = time.time() - start_time
|
|
|
|
| 30 |
subformat: str,
|
| 31 |
istranslate: bool,
|
| 32 |
add_timestamp: bool,
|
| 33 |
+
beam_size: int,
|
| 34 |
+
log_prob_threshold: float,
|
| 35 |
+
no_speech_threshold: float,
|
| 36 |
progress=gr.Progress()):
|
| 37 |
"""
|
| 38 |
Write subtitle file from Files
|
|
|
|
| 52 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 53 |
add_timestamp: bool
|
| 54 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 55 |
+
beam_size: int
|
| 56 |
+
Int value from gr.Number() that is used for decoding option.
|
| 57 |
+
log_prob_threshold: float
|
| 58 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 59 |
+
below this value, treat as failed.
|
| 60 |
+
no_speech_threshold: float
|
| 61 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 62 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 63 |
+
consider the segment as silent.
|
| 64 |
progress: gr.Progress
|
| 65 |
Indicator to show progress directly in gradio.
|
| 66 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
|
| 78 |
result, elapsed_time = self.transcribe(audio=audio,
|
| 79 |
lang=lang,
|
| 80 |
istranslate=istranslate,
|
| 81 |
+
beam_size=beam_size,
|
| 82 |
+
log_prob_threshold=log_prob_threshold,
|
| 83 |
+
no_speech_threshold=no_speech_threshold,
|
| 84 |
progress=progress)
|
| 85 |
progress(1, desc="Completed!")
|
| 86 |
|
|
|
|
| 118 |
subformat: str,
|
| 119 |
istranslate: bool,
|
| 120 |
add_timestamp: bool,
|
| 121 |
+
beam_size: int,
|
| 122 |
+
log_prob_threshold: float,
|
| 123 |
+
no_speech_threshold: float,
|
| 124 |
progress=gr.Progress()):
|
| 125 |
"""
|
| 126 |
Write subtitle file from Youtube
|
|
|
|
| 140 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 141 |
add_timestamp: bool
|
| 142 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 143 |
+
beam_size: int
|
| 144 |
+
Int value from gr.Number() that is used for decoding option.
|
| 145 |
+
log_prob_threshold: float
|
| 146 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 147 |
+
below this value, treat as failed.
|
| 148 |
+
no_speech_threshold: float
|
| 149 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 150 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 151 |
+
consider the segment as silent.
|
| 152 |
progress: gr.Progress
|
| 153 |
Indicator to show progress directly in gradio.
|
| 154 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
|
| 164 |
result, elapsed_time = self.transcribe(audio=audio,
|
| 165 |
lang=lang,
|
| 166 |
istranslate=istranslate,
|
| 167 |
+
beam_size=beam_size,
|
| 168 |
+
log_prob_threshold=log_prob_threshold,
|
| 169 |
+
no_speech_threshold=no_speech_threshold,
|
| 170 |
progress=progress)
|
| 171 |
progress(1, desc="Completed!")
|
| 172 |
|
|
|
|
| 183 |
print(f"Error transcribing youtube video: {str(e)}")
|
| 184 |
return f"Error transcribing youtube video: {str(e)}"
|
| 185 |
finally:
|
| 186 |
+
try:
|
| 187 |
+
if 'yt' not in locals():
|
| 188 |
+
yt = get_ytdata(youtubelink)
|
| 189 |
+
file_path = get_ytaudio(yt)
|
| 190 |
+
else:
|
| 191 |
+
file_path = get_ytaudio(yt)
|
| 192 |
+
|
| 193 |
+
self.release_cuda_memory()
|
| 194 |
+
self.remove_input_files([file_path])
|
| 195 |
+
except Exception as cleanup_error:
|
| 196 |
+
pass
|
| 197 |
|
| 198 |
def transcribe_mic(self,
|
| 199 |
micaudio: str,
|
|
|
|
| 201 |
lang: str,
|
| 202 |
subformat: str,
|
| 203 |
istranslate: bool,
|
| 204 |
+
beam_size: int,
|
| 205 |
+
log_prob_threshold: float,
|
| 206 |
+
no_speech_threshold: float,
|
| 207 |
progress=gr.Progress()):
|
| 208 |
"""
|
| 209 |
Write subtitle file from microphone
|
|
|
|
| 221 |
istranslate: bool
|
| 222 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 223 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 224 |
+
beam_size: int
|
| 225 |
+
Int value from gr.Number() that is used for decoding option.
|
| 226 |
+
log_prob_threshold: float
|
| 227 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 228 |
+
below this value, treat as failed.
|
| 229 |
+
no_speech_threshold: float
|
| 230 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 231 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 232 |
+
consider the segment as silent.
|
| 233 |
progress: gr.Progress
|
| 234 |
Indicator to show progress directly in gradio.
|
| 235 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
|
| 242 |
result, elapsed_time = self.transcribe(audio=micaudio,
|
| 243 |
lang=lang,
|
| 244 |
istranslate=istranslate,
|
| 245 |
+
beam_size=beam_size,
|
| 246 |
+
log_prob_threshold=log_prob_threshold,
|
| 247 |
+
no_speech_threshold=no_speech_threshold,
|
| 248 |
progress=progress)
|
| 249 |
progress(1, desc="Completed!")
|
| 250 |
|
|
|
|
| 267 |
audio: Union[str, np.ndarray, torch.Tensor],
|
| 268 |
lang: str,
|
| 269 |
istranslate: bool,
|
| 270 |
+
beam_size: int,
|
| 271 |
+
log_prob_threshold: float,
|
| 272 |
+
no_speech_threshold: float,
|
| 273 |
progress: gr.Progress
|
| 274 |
) -> Tuple[list[dict], float]:
|
| 275 |
"""
|
|
|
|
| 284 |
istranslate: bool
|
| 285 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 286 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 287 |
+
beam_size: int
|
| 288 |
+
Int value from gr.Number() that is used for decoding option.
|
| 289 |
+
log_prob_threshold: float
|
| 290 |
+
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 291 |
+
below this value, treat as failed.
|
| 292 |
+
no_speech_threshold: float
|
| 293 |
+
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 294 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 295 |
+
consider the segment as silent.
|
| 296 |
progress: gr.Progress
|
| 297 |
Indicator to show progress directly in gradio.
|
| 298 |
|
|
|
|
| 315 |
segments_result = self.model.transcribe(audio=audio,
|
| 316 |
language=lang,
|
| 317 |
verbose=False,
|
| 318 |
+
beam_size=beam_size,
|
| 319 |
+
logprob_threshold=log_prob_threshold,
|
| 320 |
+
no_speech_threshold=no_speech_threshold,
|
| 321 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
| 322 |
progress_callback=progress_callback)["segments"]
|
| 323 |
elapsed_time = time.time() - start_time
|