Spaces:
Sleeping
Sleeping
Merge pull request #214 from jhj0517/fix/limit-vad
Browse files- app.py +2 -2
- modules/diarize/audio_loader.py +2 -0
- modules/diarize/diarize_pipeline.py +2 -0
- modules/vad/silero_vad.py +12 -53
- modules/whisper/faster_whisper_inference.py +17 -1
- modules/whisper/whisper_base.py +0 -15
app.py
CHANGED
|
@@ -73,7 +73,7 @@ class App:
|
|
| 73 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
| 74 |
interactive=True)
|
| 75 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 76 |
-
nb_beam_size = gr.Number(label="Beam Size", value=
|
| 77 |
info="Beam size to use for decoding.")
|
| 78 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True,
|
| 79 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
|
@@ -137,7 +137,7 @@ class App:
|
|
| 137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
| 138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
| 139 |
|
| 140 |
-
with gr.Accordion("VAD", open=False):
|
| 141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
| 143 |
info="Lower it to be more sensitive to small sounds.")
|
|
|
|
| 73 |
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
| 74 |
interactive=True)
|
| 75 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 76 |
+
nb_beam_size = gr.Number(label="Beam Size", value=5, precision=0, interactive=True,
|
| 77 |
info="Beam size to use for decoding.")
|
| 78 |
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True,
|
| 79 |
info="If the average log probability over sampled tokens is below this value, treat as failed.")
|
|
|
|
| 137 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
| 138 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
| 139 |
|
| 140 |
+
with gr.Accordion("VAD", open=False, visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
| 141 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 142 |
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5,
|
| 143 |
info="Lower it to be more sensitive to small sounds.")
|
modules/diarize/audio_loader.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
from functools import lru_cache
|
|
|
|
| 1 |
+
# Adapted from https://github.com/m-bain/whisperX/blob/main/whisperx/audio.py
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import subprocess
|
| 5 |
from functools import lru_cache
|
modules/diarize/diarize_pipeline.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
| 1 |
+
# Adapted from https://github.com/m-bain/whisperX/blob/main/whisperx/diarize.py
|
| 2 |
+
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
| 5 |
import os
|
modules/vad/silero_vad.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
|
|
|
| 1 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 2 |
import numpy as np
|
| 3 |
-
from typing import BinaryIO, Union, List, Optional
|
| 4 |
import warnings
|
| 5 |
import faster_whisper
|
| 6 |
import gradio as gr
|
|
@@ -15,7 +17,6 @@ class SileroVAD:
|
|
| 15 |
def run(self,
|
| 16 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 17 |
vad_parameters: VadOptions,
|
| 18 |
-
silence_non_speech: bool = True,
|
| 19 |
progress: gr.Progress = gr.Progress()):
|
| 20 |
"""
|
| 21 |
Run VAD
|
|
@@ -26,8 +27,6 @@ class SileroVAD:
|
|
| 26 |
Audio path or file binary or Audio numpy array
|
| 27 |
vad_parameters:
|
| 28 |
Options for VAD processing.
|
| 29 |
-
silence_non_speech: bool
|
| 30 |
-
If True, non-speech parts will be silenced instead of being removed.
|
| 31 |
progress: gr.Progress
|
| 32 |
Indicator to show progress directly in gradio.
|
| 33 |
|
|
@@ -43,32 +42,19 @@ class SileroVAD:
|
|
| 43 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
| 44 |
|
| 45 |
duration = audio.shape[0] / sampling_rate
|
|
|
|
| 46 |
|
| 47 |
if vad_parameters is None:
|
| 48 |
vad_parameters = VadOptions()
|
| 49 |
elif isinstance(vad_parameters, dict):
|
| 50 |
vad_parameters = VadOptions(**vad_parameters)
|
| 51 |
-
|
| 52 |
speech_chunks = self.get_speech_timestamps(
|
| 53 |
audio=audio,
|
| 54 |
vad_options=vad_parameters,
|
| 55 |
progress=progress
|
| 56 |
)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
audio=audio,
|
| 60 |
-
chunks=speech_chunks,
|
| 61 |
-
silence_non_speech=silence_non_speech
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
if silence_non_speech:
|
| 65 |
-
print(
|
| 66 |
-
f"VAD filter silenced {self.format_timestamp(duration_diff)} of audio.",
|
| 67 |
-
)
|
| 68 |
-
else:
|
| 69 |
-
print(
|
| 70 |
-
f"VAD filter removed {self.format_timestamp(duration_diff)} of audio",
|
| 71 |
-
)
|
| 72 |
|
| 73 |
return audio
|
| 74 |
|
|
@@ -224,41 +210,13 @@ class SileroVAD:
|
|
| 224 |
def update_model(self):
|
| 225 |
self.model = get_vad_model()
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
audio
|
| 230 |
-
chunks: List[dict],
|
| 231 |
-
silence_non_speech: bool = True,
|
| 232 |
-
) -> Tuple[np.ndarray, float]:
|
| 233 |
-
"""Collects and concatenate audio chunks.
|
| 234 |
-
|
| 235 |
-
Args:
|
| 236 |
-
audio: One dimensional float array.
|
| 237 |
-
chunks: List of dictionaries containing start and end samples of speech chunks
|
| 238 |
-
silence_non_speech: If True, non-speech parts will be silenced instead of being removed.
|
| 239 |
-
|
| 240 |
-
Returns:
|
| 241 |
-
Tuple containing:
|
| 242 |
-
- Processed audio as a numpy array
|
| 243 |
-
- Duration of non-speech (silenced or removed) audio in seconds
|
| 244 |
-
"""
|
| 245 |
if not chunks:
|
| 246 |
-
return np.array([], dtype=np.float32)
|
| 247 |
-
|
| 248 |
-
total_samples = audio.shape[0]
|
| 249 |
-
speech_samples_count = sum(chunk["end"] - chunk["start"] for chunk in chunks)
|
| 250 |
-
non_speech_samples_count = total_samples - speech_samples_count
|
| 251 |
-
non_speech_duration = non_speech_samples_count / self.sampling_rate
|
| 252 |
|
| 253 |
-
|
| 254 |
-
processed_audio = np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
| 255 |
-
else:
|
| 256 |
-
processed_audio = np.zeros_like(audio)
|
| 257 |
-
for chunk in chunks:
|
| 258 |
-
start, end = chunk['start'], chunk['end']
|
| 259 |
-
processed_audio[start:end] = audio[start:end]
|
| 260 |
-
|
| 261 |
-
return processed_audio, non_speech_duration
|
| 262 |
|
| 263 |
@staticmethod
|
| 264 |
def format_timestamp(
|
|
@@ -282,3 +240,4 @@ class SileroVAD:
|
|
| 282 |
return (
|
| 283 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 284 |
)
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py
|
| 2 |
+
|
| 3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 4 |
import numpy as np
|
| 5 |
+
from typing import BinaryIO, Union, List, Optional
|
| 6 |
import warnings
|
| 7 |
import faster_whisper
|
| 8 |
import gradio as gr
|
|
|
|
| 17 |
def run(self,
|
| 18 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 19 |
vad_parameters: VadOptions,
|
|
|
|
| 20 |
progress: gr.Progress = gr.Progress()):
|
| 21 |
"""
|
| 22 |
Run VAD
|
|
|
|
| 27 |
Audio path or file binary or Audio numpy array
|
| 28 |
vad_parameters:
|
| 29 |
Options for VAD processing.
|
|
|
|
|
|
|
| 30 |
progress: gr.Progress
|
| 31 |
Indicator to show progress directly in gradio.
|
| 32 |
|
|
|
|
| 42 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
| 43 |
|
| 44 |
duration = audio.shape[0] / sampling_rate
|
| 45 |
+
duration_after_vad = duration
|
| 46 |
|
| 47 |
if vad_parameters is None:
|
| 48 |
vad_parameters = VadOptions()
|
| 49 |
elif isinstance(vad_parameters, dict):
|
| 50 |
vad_parameters = VadOptions(**vad_parameters)
|
|
|
|
| 51 |
speech_chunks = self.get_speech_timestamps(
|
| 52 |
audio=audio,
|
| 53 |
vad_options=vad_parameters,
|
| 54 |
progress=progress
|
| 55 |
)
|
| 56 |
+
audio = self.collect_chunks(audio, speech_chunks)
|
| 57 |
+
duration_after_vad = audio.shape[0] / sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
return audio
|
| 60 |
|
|
|
|
| 210 |
def update_model(self):
|
| 211 |
self.model = get_vad_model()
|
| 212 |
|
| 213 |
+
@staticmethod
|
| 214 |
+
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
| 215 |
+
"""Collects and concatenates audio chunks."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
if not chunks:
|
| 217 |
+
return np.array([], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
+
return np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
@staticmethod
|
| 222 |
def format_timestamp(
|
|
|
|
| 240 |
return (
|
| 241 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 242 |
)
|
| 243 |
+
|
modules/whisper/faster_whisper_inference.py
CHANGED
|
@@ -71,6 +71,20 @@ class FasterWhisperInference(WhisperBase):
|
|
| 71 |
if not params.hotwords:
|
| 72 |
params.hotwords = None
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
| 75 |
|
| 76 |
segments, info = self.model.transcribe(
|
|
@@ -100,7 +114,9 @@ class FasterWhisperInference(WhisperBase):
|
|
| 100 |
hotwords=params.hotwords,
|
| 101 |
language_detection_threshold=params.language_detection_threshold,
|
| 102 |
language_detection_segments=params.language_detection_segments,
|
| 103 |
-
prompt_reset_on_temperature=params.prompt_reset_on_temperature
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
progress(0, desc="Loading audio..")
|
| 106 |
|
|
|
|
| 71 |
if not params.hotwords:
|
| 72 |
params.hotwords = None
|
| 73 |
|
| 74 |
+
vad_options = None
|
| 75 |
+
if params.vad_filter:
|
| 76 |
+
# Explicit value set for float('inf') from gr.Number()
|
| 77 |
+
if params.max_speech_duration_s >= 9999:
|
| 78 |
+
params.max_speech_duration_s = float('inf')
|
| 79 |
+
|
| 80 |
+
vad_options = VadOptions(
|
| 81 |
+
threshold=params.threshold,
|
| 82 |
+
min_speech_duration_ms=params.min_speech_duration_ms,
|
| 83 |
+
max_speech_duration_s=params.max_speech_duration_s,
|
| 84 |
+
min_silence_duration_ms=params.min_silence_duration_ms,
|
| 85 |
+
speech_pad_ms=params.speech_pad_ms
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
|
| 89 |
|
| 90 |
segments, info = self.model.transcribe(
|
|
|
|
| 114 |
hotwords=params.hotwords,
|
| 115 |
language_detection_threshold=params.language_detection_threshold,
|
| 116 |
language_detection_segments=params.language_detection_segments,
|
| 117 |
+
prompt_reset_on_temperature=params.prompt_reset_on_temperature,
|
| 118 |
+
vad_filter=params.vad_filter,
|
| 119 |
+
vad_parameters=vad_options
|
| 120 |
)
|
| 121 |
progress(0, desc="Loading audio..")
|
| 122 |
|
modules/whisper/whisper_base.py
CHANGED
|
@@ -85,21 +85,6 @@ class WhisperBase(ABC):
|
|
| 85 |
"""
|
| 86 |
params = WhisperParameters.as_value(*whisper_params)
|
| 87 |
|
| 88 |
-
if params.vad_filter:
|
| 89 |
-
vad_options = VadOptions(
|
| 90 |
-
threshold=params.threshold,
|
| 91 |
-
min_speech_duration_ms=params.min_speech_duration_ms,
|
| 92 |
-
max_speech_duration_s=params.max_speech_duration_s,
|
| 93 |
-
min_silence_duration_ms=params.min_silence_duration_ms,
|
| 94 |
-
speech_pad_ms=params.speech_pad_ms
|
| 95 |
-
)
|
| 96 |
-
audio = self.vad.run(
|
| 97 |
-
audio=audio,
|
| 98 |
-
vad_parameters=vad_options,
|
| 99 |
-
silence_non_speech=True,
|
| 100 |
-
progress=progress
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
if params.lang == "Automatic Detection":
|
| 104 |
params.lang = None
|
| 105 |
else:
|
|
|
|
| 85 |
"""
|
| 86 |
params = WhisperParameters.as_value(*whisper_params)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
if params.lang == "Automatic Detection":
|
| 89 |
params.lang = None
|
| 90 |
else:
|