Spaces:
Running
Running
jhj0517
commited on
Commit
·
70cb93a
1
Parent(s):
a5dbf21
set default beam size for both models
Browse files
modules/faster_whisper_inference.py
CHANGED
|
@@ -24,7 +24,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 24 |
self.available_models = whisper.available_models()
|
| 25 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 26 |
self.translatable_models = ["large", "large-v1", "large-v2"]
|
| 27 |
-
self.default_beam_size =
|
| 28 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
|
| 30 |
def transcribe_file(self,
|
|
|
|
| 24 |
self.available_models = whisper.available_models()
|
| 25 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 26 |
self.translatable_models = ["large", "large-v1", "large-v2"]
|
| 27 |
+
self.default_beam_size = 1
|
| 28 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
|
| 30 |
def transcribe_file(self,
|
modules/whisper_Inference.py
CHANGED
|
@@ -21,6 +21,7 @@ class WhisperInference(BaseInterface):
|
|
| 21 |
self.model = None
|
| 22 |
self.available_models = whisper.available_models()
|
| 23 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
|
|
|
| 24 |
|
| 25 |
def transcribe_file(self,
|
| 26 |
fileobjs: list,
|
|
@@ -250,6 +251,7 @@ class WhisperInference(BaseInterface):
|
|
| 250 |
segments_result = self.model.transcribe(audio=audio,
|
| 251 |
language=lang,
|
| 252 |
verbose=False,
|
|
|
|
| 253 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
| 254 |
progress_callback=progress_callback)["segments"]
|
| 255 |
elapsed_time = time.time() - start_time
|
|
|
|
| 21 |
self.model = None
|
| 22 |
self.available_models = whisper.available_models()
|
| 23 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 24 |
+
self.default_beam_size = 1
|
| 25 |
|
| 26 |
def transcribe_file(self,
|
| 27 |
fileobjs: list,
|
|
|
|
| 251 |
segments_result = self.model.transcribe(audio=audio,
|
| 252 |
language=lang,
|
| 253 |
verbose=False,
|
| 254 |
+
beam_size=self.default_beam_size,
|
| 255 |
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
|
| 256 |
progress_callback=progress_callback)["segments"]
|
| 257 |
elapsed_time = time.time() - start_time
|