Spaces:
Running
Running
jhj0517
commited on
Commit
·
5f3fe7d
1
Parent(s):
7e8138f
implement txt file format in `whisper_inference.py`
Browse files- modules/whisper_Inference.py +33 -28
modules/whisper_Inference.py
CHANGED
|
@@ -8,7 +8,7 @@ from datetime import datetime
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from .base_interface import BaseInterface
|
| 11 |
-
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
| 12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 13 |
|
| 14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
|
@@ -30,7 +30,7 @@ class WhisperInference(BaseInterface):
|
|
| 30 |
fileobjs: list,
|
| 31 |
model_size: str,
|
| 32 |
lang: str,
|
| 33 |
-
|
| 34 |
istranslate: bool,
|
| 35 |
add_timestamp: bool,
|
| 36 |
beam_size: int,
|
|
@@ -49,8 +49,8 @@ class WhisperInference(BaseInterface):
|
|
| 49 |
Whisper model size from gr.Dropdown()
|
| 50 |
lang: str
|
| 51 |
Source language of the file to transcribe from gr.Dropdown()
|
| 52 |
-
|
| 53 |
-
|
| 54 |
istranslate: bool
|
| 55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -93,11 +93,11 @@ class WhisperInference(BaseInterface):
|
|
| 93 |
|
| 94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 95 |
file_name = safe_filename(file_name)
|
| 96 |
-
subtitle = self.
|
| 97 |
file_name=file_name,
|
| 98 |
transcribed_segments=result,
|
| 99 |
add_timestamp=add_timestamp,
|
| 100 |
-
|
| 101 |
)
|
| 102 |
|
| 103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
@@ -122,7 +122,7 @@ class WhisperInference(BaseInterface):
|
|
| 122 |
youtubelink: str,
|
| 123 |
model_size: str,
|
| 124 |
lang: str,
|
| 125 |
-
|
| 126 |
istranslate: bool,
|
| 127 |
add_timestamp: bool,
|
| 128 |
beam_size: int,
|
|
@@ -141,8 +141,8 @@ class WhisperInference(BaseInterface):
|
|
| 141 |
Whisper model size from gr.Dropdown()
|
| 142 |
lang: str
|
| 143 |
Source language of the file to transcribe from gr.Dropdown()
|
| 144 |
-
|
| 145 |
-
|
| 146 |
istranslate: bool
|
| 147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -181,11 +181,11 @@ class WhisperInference(BaseInterface):
|
|
| 181 |
progress(1, desc="Completed!")
|
| 182 |
|
| 183 |
file_name = safe_filename(yt.title)
|
| 184 |
-
subtitle = self.
|
| 185 |
file_name=file_name,
|
| 186 |
transcribed_segments=result,
|
| 187 |
add_timestamp=add_timestamp,
|
| 188 |
-
|
| 189 |
)
|
| 190 |
|
| 191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
@@ -209,7 +209,7 @@ class WhisperInference(BaseInterface):
|
|
| 209 |
micaudio: str,
|
| 210 |
model_size: str,
|
| 211 |
lang: str,
|
| 212 |
-
|
| 213 |
istranslate: bool,
|
| 214 |
beam_size: int,
|
| 215 |
log_prob_threshold: float,
|
|
@@ -227,8 +227,8 @@ class WhisperInference(BaseInterface):
|
|
| 227 |
Whisper model size from gr.Dropdown()
|
| 228 |
lang: str
|
| 229 |
Source language of the file to transcribe from gr.Dropdown()
|
| 230 |
-
|
| 231 |
-
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
| 232 |
istranslate: bool
|
| 233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -261,11 +261,11 @@ class WhisperInference(BaseInterface):
|
|
| 261 |
progress=progress)
|
| 262 |
progress(1, desc="Completed!")
|
| 263 |
|
| 264 |
-
subtitle = self.
|
| 265 |
file_name="Mic",
|
| 266 |
transcribed_segments=result,
|
| 267 |
add_timestamp=True,
|
| 268 |
-
|
| 269 |
)
|
| 270 |
|
| 271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
@@ -361,11 +361,11 @@ class WhisperInference(BaseInterface):
|
|
| 361 |
)
|
| 362 |
|
| 363 |
@staticmethod
|
| 364 |
-
def
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
"""
|
| 370 |
This method writes subtitle file and returns str to gr.Textbox
|
| 371 |
"""
|
|
@@ -375,13 +375,18 @@ class WhisperInference(BaseInterface):
|
|
| 375 |
else:
|
| 376 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 377 |
|
| 378 |
-
if
|
| 379 |
-
|
| 380 |
-
write_file(
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
@staticmethod
|
| 387 |
def format_time(elapsed_time: float) -> str:
|
|
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from .base_interface import BaseInterface
|
| 11 |
+
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 13 |
|
| 14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
|
|
|
| 30 |
fileobjs: list,
|
| 31 |
model_size: str,
|
| 32 |
lang: str,
|
| 33 |
+
file_format: str,
|
| 34 |
istranslate: bool,
|
| 35 |
add_timestamp: bool,
|
| 36 |
beam_size: int,
|
|
|
|
| 49 |
Whisper model size from gr.Dropdown()
|
| 50 |
lang: str
|
| 51 |
Source language of the file to transcribe from gr.Dropdown()
|
| 52 |
+
file_format: str
|
| 53 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 54 |
istranslate: bool
|
| 55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 93 |
|
| 94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 95 |
file_name = safe_filename(file_name)
|
| 96 |
+
subtitle = self.generate_and_write_file(
|
| 97 |
file_name=file_name,
|
| 98 |
transcribed_segments=result,
|
| 99 |
add_timestamp=add_timestamp,
|
| 100 |
+
file_format=file_format
|
| 101 |
)
|
| 102 |
|
| 103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
|
|
| 122 |
youtubelink: str,
|
| 123 |
model_size: str,
|
| 124 |
lang: str,
|
| 125 |
+
file_format: str,
|
| 126 |
istranslate: bool,
|
| 127 |
add_timestamp: bool,
|
| 128 |
beam_size: int,
|
|
|
|
| 141 |
Whisper model size from gr.Dropdown()
|
| 142 |
lang: str
|
| 143 |
Source language of the file to transcribe from gr.Dropdown()
|
| 144 |
+
file_format: str
|
| 145 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 146 |
istranslate: bool
|
| 147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 181 |
progress(1, desc="Completed!")
|
| 182 |
|
| 183 |
file_name = safe_filename(yt.title)
|
| 184 |
+
subtitle = self.generate_and_write_file(
|
| 185 |
file_name=file_name,
|
| 186 |
transcribed_segments=result,
|
| 187 |
add_timestamp=add_timestamp,
|
| 188 |
+
file_format=file_format
|
| 189 |
)
|
| 190 |
|
| 191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
| 209 |
micaudio: str,
|
| 210 |
model_size: str,
|
| 211 |
lang: str,
|
| 212 |
+
file_format: str,
|
| 213 |
istranslate: bool,
|
| 214 |
beam_size: int,
|
| 215 |
log_prob_threshold: float,
|
|
|
|
| 227 |
Whisper model size from gr.Dropdown()
|
| 228 |
lang: str
|
| 229 |
Source language of the file to transcribe from gr.Dropdown()
|
| 230 |
+
file_format: str
|
| 231 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 232 |
istranslate: bool
|
| 233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 261 |
progress=progress)
|
| 262 |
progress(1, desc="Completed!")
|
| 263 |
|
| 264 |
+
subtitle = self.generate_and_write_file(
|
| 265 |
file_name="Mic",
|
| 266 |
transcribed_segments=result,
|
| 267 |
add_timestamp=True,
|
| 268 |
+
file_format=file_format
|
| 269 |
)
|
| 270 |
|
| 271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
| 361 |
)
|
| 362 |
|
| 363 |
@staticmethod
|
| 364 |
+
def generate_and_write_file(file_name: str,
|
| 365 |
+
transcribed_segments: list,
|
| 366 |
+
add_timestamp: bool,
|
| 367 |
+
file_format: str,
|
| 368 |
+
) -> str:
|
| 369 |
"""
|
| 370 |
This method writes subtitle file and returns str to gr.Textbox
|
| 371 |
"""
|
|
|
|
| 375 |
else:
|
| 376 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 377 |
|
| 378 |
+
if file_format == "SRT":
|
| 379 |
+
content = get_srt(transcribed_segments)
|
| 380 |
+
write_file(content, f"{output_path}.srt")
|
| 381 |
+
|
| 382 |
+
elif file_format == "WebVTT":
|
| 383 |
+
content = get_vtt(transcribed_segments)
|
| 384 |
+
write_file(content, f"{output_path}.vtt")
|
| 385 |
+
|
| 386 |
+
elif file_format == "txt":
|
| 387 |
+
content = get_txt(transcribed_segments)
|
| 388 |
+
write_file(content, f"{output_path}.vtt")
|
| 389 |
+
return content
|
| 390 |
|
| 391 |
@staticmethod
|
| 392 |
def format_time(elapsed_time: float) -> str:
|