File size: 4,054 Bytes
ec41bf5
87272f5
ec41bf5
87272f5
ec41bf5
87272f5
 
 
 
 
ec41bf5
 
87272f5
ec41bf5
 
 
 
 
87272f5
ec41bf5
87272f5
ec41bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87272f5
 
 
 
 
 
 
ec41bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87272f5
 
 
 
 
ec41bf5
87272f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import time
import numpy as np
from typing import BinaryIO, Union, Tuple, List
import torch
import transformers
from transformers import pipeline
from transformers.utils import is_flash_attn_2_available
import whisper
import gradio as gr

from modules.whisper_parameter import *
from modules.whisper_base import WhisperBase


class InsanelyFastWhisperInference(WhisperBase):
    def __init__(self):
        super().__init__(
            model_dir=os.path.join("models", "Whisper", "insanely_fast_whisper")
        )
        self.available_compute_types = ["float16"]

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress,
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperValues(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        if params.lang == "Automatic Detection":
            params.lang = None

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        segments_result = self.model(
            inputs=audio,
            chunk_length_s=30,
            batch_size=24,
            return_timestamps=True,
        )
        segments_result = self.format_result(transcribed_result=segments_result)
        elapsed_time = time.time() - start_time
        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress,
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size

        self.model = pipeline(
            "automatic-speech-recognition",
            model=os.path.join(self.model_dir, model_size),
            torch_dtype=self.current_compute_type,
            device=self.device,
            model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
        )

    @staticmethod
    def format_result(transcribed_result: dict) -> List[dict]:
        """
        Format the transcription result of insanely_fast_whisper as the same with other implementation.

        Parameters
        ----------
        transcribed_result: dict
            Transcription result of the insanely_fast_whisper

        Returns
        ----------
        result: List[dict]
            Formatted result as the same with other implementation
        """
        result = transcribed_result["chunks"]
        for item in result:
            start, end = item["timestamp"][0], item["timestamp"][1]
            item["start"] = start
            item["end"] = end
        return result