Spaces:
Running
Running
File size: 7,204 Bytes
ec41bf5 87272f5 ec41bf5 87272f5 ec41bf5 87272f5 4cbac55 bb48043 201b316 bb48043 8126fce ccbfe76 a3de454 ec41bf5 a3de454 b2bb752 7d9eec3 8126fce 7d9eec3 b2bb752 ec41bf5 5633565 201b316 8126fce ec41bf5 0a34091 9e5ed74 ec41bf5 732a962 ec41bf5 ddbe0b6 ec41bf5 ca8ee6a ec41bf5 ddbe0b6 ec41bf5 501c404 ec41bf5 bb48043 6ced57d c8e54db 6ced57d bb48043 f4c648c 661e83c 6ced57d bb48043 ec41bf5 ddbe0b6 ec41bf5 732a962 ec41bf5 5e73da1 ec41bf5 87272f5 ec41bf5 87272f5 9e5ed74 87272f5 9e5ed74 87272f5 9e5ed74 87272f5 9e5ed74 87272f5 5e73da1 4cbac55 5e73da1 4cbac55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import time
import numpy as np
from typing import BinaryIO, Union, Tuple, List
import torch
from transformers import pipeline
from transformers.utils import is_flash_attn_2_available
import gradio as gr
from huggingface_hub import hf_hub_download
import whisper
from rich.progress import Progress, TimeElapsedColumn, BarColumn, TextColumn
from argparse import Namespace
from modules.utils.paths import (INSANELY_FAST_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, UVR_MODELS_DIR, OUTPUT_DIR)
from modules.whisper.data_classes import *
from modules.whisper.base_transcription_pipeline import BaseTranscriptionPipeline
class InsanelyFastWhisperInference(BaseTranscriptionPipeline):
def __init__(self,
model_dir: str = INSANELY_FAST_WHISPER_MODELS_DIR,
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
uvr_model_dir: str = UVR_MODELS_DIR,
output_dir: str = OUTPUT_DIR,
):
super().__init__(
model_dir=model_dir,
output_dir=output_dir,
diarization_model_dir=diarization_model_dir,
uvr_model_dir=uvr_model_dir
)
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
self.available_models = self.get_model_paths()
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
progress: gr.Progress = gr.Progress(),
*whisper_params,
) -> Tuple[List[Segment], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
segments_result: List[Segment]
list of Segment that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperParams.from_list(list(whisper_params))
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
progress(0, desc="Transcribing...Progress is not shown in insanely-fast-whisper.")
with Progress(
TextColumn("[progress.description]{task.description}"),
BarColumn(style="yellow1", pulse_style="white"),
TimeElapsedColumn(),
) as progress:
progress.add_task("[yellow]Transcribing...", total=None)
kwargs = {
"no_speech_threshold": params.no_speech_threshold,
"temperature": params.temperature,
"compression_ratio_threshold": params.compression_ratio_threshold,
"logprob_threshold": params.log_prob_threshold,
}
if self.current_model_size.endswith(".en"):
pass
else:
kwargs["language"] = params.lang
kwargs["task"] = "translate" if params.is_translate else "transcribe"
segments = self.model(
inputs=audio,
return_timestamps=True,
chunk_length_s=params.chunk_length,
batch_size=params.batch_size,
generate_kwargs=kwargs
)
segments_result = []
for item in segments["chunks"]:
start, end = item["timestamp"][0], item["timestamp"][1]
if end is None:
end = start
segments_result.append(Segment(
text=item["text"],
start=start,
end=end
))
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress = gr.Progress(),
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
model_path = os.path.join(self.model_dir, model_size)
if not os.path.isdir(model_path) or not os.listdir(model_path):
self.download_model(
model_size=model_size,
download_root=model_path,
progress=progress
)
self.current_compute_type = compute_type
self.current_model_size = model_size
self.model = pipeline(
"automatic-speech-recognition",
model=os.path.join(self.model_dir, model_size),
torch_dtype=self.current_compute_type,
device=self.device,
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
)
def get_model_paths(self):
"""
Get available models from models path including fine-tuned model.
Returns
----------
Name set of models
"""
openai_models = whisper.available_models()
distil_models = ["distil-large-v2", "distil-large-v3", "distil-medium.en", "distil-small.en"]
default_models = openai_models + distil_models
existing_models = os.listdir(self.model_dir)
wrong_dirs = [".locks"]
available_models = default_models + existing_models
available_models = [model for model in available_models if model not in wrong_dirs]
available_models = sorted(set(available_models), key=available_models.index)
return available_models
@staticmethod
def download_model(
model_size: str,
download_root: str,
progress: gr.Progress
):
progress(0, 'Initializing model..')
print(f'Downloading {model_size} to "{download_root}"....')
os.makedirs(download_root, exist_ok=True)
download_list = [
"model.safetensors",
"config.json",
"generation_config.json",
"preprocessor_config.json",
"tokenizer.json",
"tokenizer_config.json",
"added_tokens.json",
"special_tokens_map.json",
"vocab.json",
]
if model_size.startswith("distil"):
repo_id = f"distil-whisper/{model_size}"
else:
repo_id = f"openai/whisper-{model_size}"
for item in download_list:
hf_hub_download(repo_id=repo_id, filename=item, local_dir=download_root)
|